The one-point model: solving equations in pointland

Arjan Berger

Laboratoire de Chimie et Physique Quantiques Université de Toulouse III - Paul Sabatier, Toulouse, France European Theoretical Spectroscopy Facility (ETSF)

GDR-NBODY, January 11 2024, Toulouse

Acknowledgments

- Pina Romaniello
- Lucia Reining
- Giovanna Lani
- Walter Tarantino
- Santiago Rigamonti
- Falk Tandetzky
- Christian Brouder
- Adrian Stan
- Bernardo Mendoza

Motivation

One-point model (OPM): One point in space, time and spin.

- functions become variables and functionals become functions.

$$
\begin{aligned}
f(\mathbf{r}, \sigma, t) & \rightarrow f \\
F[g(\mathbf{r}, \sigma, t)] & \rightarrow F(g)
\end{aligned}
$$

- Integrals and sums can be dropped.

Motivation

One-point model (OPM): One point in space, time and spin.

- functions become variables and functionals become functions.

$$
\begin{aligned}
f(\mathbf{r}, \sigma, t) & \rightarrow f \\
F[g(\mathbf{r}, \sigma, t)] & \rightarrow F(g)
\end{aligned}
$$

- Integrals and sums can be dropped.

Features

- retains the structure of the full equations
- insight into the solutions of complicated equations (Kadanaff-Baym; Hedin)
- physics much reduced

Hedin's equations

A closed set of equations for the one-body Green's function.

$$
\begin{aligned}
G(1,2) & =G_{H}(1,2)+G_{H}(1,3) \Sigma_{x c}(3,4) G(4,2) \\
\Sigma_{x c}(1,2) & =i G(3,2) W(4,2) \Gamma(4,1,3) \\
W(1,2) & =v_{c}(1,2)+v_{c}(1,3) P(3,4) W(4,2) \\
P(1,2) & =-i G(2,3) G(4,2) \Gamma(1,3,4) \\
\Gamma(1,2,3) & =\delta(1,2) \delta(1,3)+G(4,5) G(6,7) \frac{\delta \Sigma_{x c}(2,3)}{\delta G(4,7)} \Gamma(1,5,6)
\end{aligned}
$$

Hedin's equations in one point

$$
G \rightarrow y, \Sigma_{x c} \rightarrow s_{x c}, W \rightarrow u, v_{c} \rightarrow v, P \rightarrow p, \Gamma \rightarrow g
$$

$$
\begin{aligned}
y & =y_{H}+y_{H} s_{x c} y \\
s_{x c} & =y u g \\
u & =v+v p u \\
p & = \pm y^{2} g \\
g & =1+\frac{d s_{x c}(y)}{d y} y^{2} g
\end{aligned}
$$

Hedin's equations in one point
$G \rightarrow y, \Sigma_{x c} \rightarrow s_{x c}, W \rightarrow u, v_{c} \rightarrow v, P \rightarrow p, \Gamma \rightarrow g$.

$$
\begin{aligned}
y & =y_{H}+y_{H} s_{x c} y \\
s_{x c} & =y u g \\
u & =v+v p u \\
p & = \pm y^{2} g \\
g & =1+\frac{d s_{x c}(y)}{d y} y^{2} g
\end{aligned}
$$

Molinari found a perturbative solution using the $+\operatorname{sign}\left(y_{H}=1\right)$:

$$
s=v_{H}+s_{x c}=2 v+10 v^{2}+74 v^{3}+706 v^{4}+\cdots
$$

The prefactors equal the number of diagrams at each order in v.
Pavlyukh and Hübner found an implicit solution of Hedin's equations (+ sign).

Molinari, PRB 71, 113102 (2005); Molinari and Manini, EPJB 51, 331 (2006)
Pavlyukh and Hübner, J. Math. Phys. 48, 052109 (2007)

Kadanoff-Baym equation

A closed equation for the 1-GF is given by the Kadanoff-Baym equation:

$$
\begin{aligned}
G(1,2 ;[\varphi]) & =G_{0}(1,2)+\int d 3 G_{0}(1,3) v_{H}(3 ;[\varphi]) G(3,2 ;[\varphi]) \\
& +\int d 3 G_{0}(1,3) \varphi(3) G(3,2 ;[\varphi])+i \int d 34 G_{0}(1,3) v_{c}\left(3^{+}, 4\right) \frac{\delta G(3,2 ;[\varphi])}{\delta \varphi(4)}
\end{aligned}
$$

The equilibrium Green's function: $G(1,2)=G(1,2 ;[\varphi=0])$

Kadanoff-Baym equation

A closed equation for the 1-GF is given by the Kadanoff-Baym equation:

$$
\begin{aligned}
G(1,2 ;[\varphi]) & =G_{0}(1,2)+\int d 3 G_{0}(1,3) v_{H}(3 ;[\varphi]) G(3,2 ;[\varphi]) \\
& +\int d 3 G_{0}(1,3) \varphi(3) G(3,2 ;[\varphi])+i \int d 34 G_{0}(1,3) v_{c}\left(3^{+}, 4\right) \frac{\delta G(3,2 ;[\varphi])}{\delta \varphi(4)}
\end{aligned}
$$

The equilibrium Green's function: $G(1,2)=G(1,2 ;[\varphi=0])$
Functional differential equation is nonlinear due to $v_{H}=-i v G$.
Linearize v_{H} around $\phi=0$.

$$
\begin{aligned}
G(1,2 ;[\tilde{\varphi}]) & =G_{H}(1,2)+\int d 3 G_{H}(1,3) \tilde{\varphi}(3) G(3,2 ;[\tilde{\varphi}]) \\
& +i \int d 34 G_{H}(1,3) W\left(3^{+}, 4\right) \frac{\delta G(3,2 ;[\tilde{\varphi}])}{\delta \tilde{\varphi}(4)}
\end{aligned}
$$

with $W=\epsilon^{-1} v$ and $\tilde{\varphi}=\epsilon^{-1} \varphi$

Lani, Romaniello, Reining, New J. Phys. 14, 013056 (2012)

linearized Kadanoff-Baym equation

Linearized KBE in one point

$$
y(x)=y_{H}+y_{H} x y(x)+u y_{H} y^{\prime}(x) .
$$

General solution $(x=0)$:

$$
y_{u}=-\sqrt{\frac{\pi}{2 u}} \exp \left[\frac{1}{2 u y_{H}^{2}}\right]\left\{\operatorname{erf}\left(\sqrt{\frac{1}{2 u y_{0}^{2}}}\right)+C\left(y_{H}, u\right)\right\}
$$

linearized Kadanoff-Baym equation

Linearized KBE in one point

$$
y(x)=y_{H}+y_{H} x y(x)+u y_{H} y^{\prime}(x)
$$

General solution $(x=0)$:

$$
y_{u}=-\sqrt{\frac{\pi}{2 u}} \exp \left[\frac{1}{2 u y_{H}^{2}}\right]\left\{\operatorname{erf}\left(\sqrt{\frac{1}{2 u y_{0}^{2}}}\right)+C\left(y_{H}, u\right)\right\}
$$

Initial condition:

$$
\lim _{u \rightarrow 0} y_{u}=y_{H} \quad \longrightarrow \quad C=-1
$$

Physical solution

$$
y_{\text {phys }}=-\sqrt{\frac{\pi}{2 u}} \exp \left[\frac{1}{2 u y_{H}^{2}}\right]\left\{\operatorname{erf}\left(\sqrt{\frac{1}{2 u y_{0}^{2}}}\right)-1\right\}
$$

Lani, Romaniello, Reining, New J. Phys. 14, 013056 (2012)

GW and self-consistency

In one point

$$
\begin{aligned}
y & =y_{H}+y_{H} s_{x c} y \\
s_{x c} & =-u y
\end{aligned}
$$

Quadratic equation:

$$
y=y_{H}-y_{H} u y^{2} \quad \rightarrow \quad y_{u}=\frac{ \pm \sqrt{1+4 u y_{H}^{2}}-1}{2 u y_{H}}
$$

Physical solution: $+\left(\lim _{u \rightarrow 0} y_{u}=y_{H}\right)$
Unphysical solution: - $\left(\lim _{u \rightarrow 0} y_{u} \neq y_{H}\right)$

GW and self-consistency

In one point

$$
\begin{aligned}
y & =y_{H}+y_{H} s_{x c} y \\
s_{x c} & =-u y
\end{aligned}
$$

Quadratic equation:

$$
y=y_{H}-y_{H} u y^{2} \quad \rightarrow \quad y_{u}=\frac{ \pm \sqrt{1+4 u y_{H}^{2}}-1}{2 u y_{H}}
$$

Physical solution: $+\left(\lim _{u \rightarrow 0} y_{u}=y_{H}\right)$
Unphysical solution: - $\left(\lim _{u \rightarrow 0} y_{u} \neq y_{H}\right)$
In practice one iterates to obtain the self-consistent solution.

$$
\begin{aligned}
& G^{(n+1)}=\left(1-\Sigma_{x c}\left[G^{(n)}\right] G_{H}\right)^{-1} G_{H} \rightarrow \quad y^{(n+1)}=\frac{y_{H}}{1+u y_{H} y^{(n)}} \quad \rightarrow \quad \text { physical } \\
& \Sigma_{x c}\left[G^{(n+1)}\right]=G_{H}^{-1}-\left[G^{(n)}\right]^{-1} \quad \rightarrow \quad y^{(n+1)}=-\frac{1}{u y_{H}}+\frac{1}{u y^{(n)}} \quad \rightarrow \quad \text { unphysical }
\end{aligned}
$$

Lani, Romaniello, Reining, New J. Phys. 14, 013056 (2012)

GW: exact solutions

So far $u(W)$ and $y_{H}\left(G_{H}\right)$ were fixed.
What happens if we remove these constraints?

$$
u=\frac{v}{1+v y^{2}} \quad y_{H}=\frac{y_{0}}{1+y_{0} v y}
$$

GW: exact solutions

So far $u(W)$ and $y_{H}\left(G_{H}\right)$ were fixed.
What happens if we remove these constraints?

$$
u=\frac{v}{1+v y^{2}} \quad y_{H}=\frac{y_{0}}{1+y_{0} v y}
$$

The GW Dyson equation in one point is a quartic equation

$$
y=\frac{y_{0}\left(1+v y^{2}\right)}{1+v y^{2}+y_{0} v^{2} y^{3}} \quad\left(G=\left[G_{0}^{-1}-\Sigma_{G W}\right]^{-1}\right)
$$

GW: exact solutions

So far $u(W)$ and $y_{H}\left(G_{H}\right)$ were fixed.
What happens if we remove these constraints?

$$
u=\frac{v}{1+v y^{2}} \quad y_{H}=\frac{y_{0}}{1+y_{0} v y}
$$

The GW Dyson equation in one point is a quartic equation

$$
y=\frac{y_{0}\left(1+v y^{2}\right)}{1+v y^{2}+y_{0} v^{2} y^{3}} \quad\left(G=\left[G_{0}^{-1}-\Sigma_{G W}\right]^{-1}\right)
$$

Four solutions: 1 physical +3 unphysical :

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)

GW: iterative solution

Usually the GW Dyson equation is solved iteratively:

$$
y_{n+1}=\frac{y_{0}\left(1+v y_{n}^{2}\right)}{1+v y_{n}^{2}+y_{0} v^{2} y_{n}^{3}} \quad\left(G=\left[G_{0}^{-1}-\Sigma_{G W}\right]^{-1}\right)
$$

GW: iterative solution

Usually the GW Dyson equation is solved iteratively:

$$
y_{n+1}=\frac{y_{0}\left(1+v y_{n}^{2}\right)}{1+v y_{n}^{2}+y_{0} v^{2} y_{n}^{3}} \quad\left(G=\left[G_{0}^{-1}-\Sigma_{G W}\right]^{-1}\right)
$$

Results:

Beyond a certain interaction strength the iterative result is not equal to physical result

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)

Attracting and repelling fixed points

Attracting fixed point: iteration converges to $y_{G W}$
Repelling fixed point: iteration does not converge to $y_{G W}$

Attracting and repelling fixed points

Attracting fixed point: iteration converges to $y_{G} W$
Repelling fixed point: iteration does not converge to $y_{G} w$
$y_{G W}$ is attracting when $y_{0}^{2} v<4 \quad y_{G W}$ is repelling when $y_{0}^{2} v>4$

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)

Alternative iteration schemes

Iteration schemes that do converge to $y_{G} w$ for all v are:

$$
y_{n+1}=\frac{y_{0}\left(1+2 v y_{n}^{2}\right)}{1+y_{0} v y_{n}+v y_{n}^{2}+y_{0} v^{2} y_{n}^{3}} \quad\left(G=G_{0}+G_{0} \Sigma_{G W} G\right)
$$

Alternative iteration schemes

Iteration schemes that do converge to $y_{G W}$ for all v are:

$$
y_{n+1}=\frac{y_{0}\left(1+2 v y_{n}^{2}\right)}{1+y_{0} v y_{n}+v y_{n}^{2}+y_{0} v^{2} y_{n}^{3}} \quad\left(G=G_{0}+G_{0} \Sigma_{G W} G\right)
$$

Or iterate y for fixed u, update u, iterate y, etc.:

$$
\begin{aligned}
u_{n} & =\frac{v}{1+v y_{n}^{2}} & (W & \left.=\left(1-v_{c} G G\right)^{-1} v_{c}\right) \\
y_{n+1} & =\frac{y_{0}}{1+y_{0}\left(v-u_{n}\right) y_{n}} & & \left(G=\left[G_{0}^{-1}-\Sigma_{G W_{\text {fixed }}}\right]^{-1}\right)
\end{aligned}
$$

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)

The full KBE

Full (non-linearized) KBE in one point $(\varphi \rightarrow z)$:

$$
y(z)=y_{0}-v y_{0} y^{2}(z)+y_{0} z y(z)+v y_{0} y^{\prime}(z)
$$

The full KBE

Full (non-linearized) KBE in one point $(\varphi \rightarrow z)$:

$$
y(z)=y_{0}-v y_{0} y^{2}(z)+y_{0} z y(z)+v y_{0} y^{\prime}(z)
$$

General solution $(z=0)$:

$$
y_{v}=y_{0}-C\left[\frac{C}{y_{0}}+\frac{1}{y_{0}^{2}} e^{\frac{1}{2 v y_{0}^{2}}}\left(C \sqrt{\frac{\pi}{2 v}} \operatorname{erf}\left[\frac{1}{\sqrt{2 v y_{0}^{2}}}\right]-1\right)\right]^{-1}
$$

The full KBE

Full (non-linearized) KBE in one point $(\varphi \rightarrow z)$:

$$
y(z)=y_{0}-v y_{0} y^{2}(z)+y_{0} z y(z)+v y_{0} y^{\prime}(z)
$$

General solution $(z=0)$:

$$
y_{v}=y_{0}-C\left[\frac{C}{y_{0}}+\frac{1}{y_{0}^{2}} e^{\frac{1}{2 v y_{0}^{2}}}\left(C \sqrt{\frac{\pi}{2 v}} \operatorname{erf}\left[\frac{1}{\sqrt{2 v y_{0}^{2}}}\right]-1\right)\right]^{-1}
$$

The physical solution should tend to y_{0} when $v \rightarrow 0$:

$$
y_{p h y s}=y_{0} \quad(C=0)
$$

One point KBE: perfect cancellation between the two terms containing v.
Full functional problem: partial cancellation.

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)

Generalized KBE in the one-point model

To mimic the partial cancellation in one point we introduce a parameter λ :

$$
y(z)=y_{0}-v y_{0} y^{2}(z)+y_{0} z y(z)+\lambda v y_{0} y^{\prime}(z) .
$$

Generalized KBE in the one-point model

To mimic the partial cancellation in one point we introduce a parameter λ :

$$
y(z)=y_{0}-v y_{0} y^{2}(z)+y_{0} z y(z)+\lambda v y_{0} y^{\prime}(z)
$$

The physical solution for $\lambda=\frac{1}{2}$:

$$
y_{p h y s}=\frac{2 y_{0}}{2+v y_{0}^{2}}
$$

Dyson equation:

$$
y=y_{0}+y_{0} s y \quad \rightarrow \quad s=-\frac{1}{2} v y_{0}
$$

The exact self-energy is a functional of y_{0}.

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)

Comparison to approximate methods

$$
\lambda=1 \quad \lambda=\frac{1}{2}
$$

$$
W_{R P A}=\left(1-v_{c} G G\right)^{-1} v_{c}
$$

In one point G obtained from the linearized $K B E$ can best be combined with $W_{\text {RPA }}$

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014) Tarantino, Mendoza, Romaniello, AB, Reining, J. Phys Condens. Matter 20, 135602 (2018)

Real life: absorption spectrum of LiF from TDDFT

Does this problem occur in real life?

$$
\epsilon(\omega)=\left(1+v_{c} \chi(\omega)\right)^{-1}
$$

where

$$
\begin{aligned}
\chi(\omega) & =\chi_{0}(\omega)+\chi_{0}(\omega) f_{H \times c}[\chi] \chi(\omega) \\
f_{H \times c}[\chi] & =v_{c}+\frac{1+v_{c} \chi(\omega=0)}{\chi_{0}(\omega=0)} \quad \text { bootstrap kernel }
\end{aligned}
$$

The OPM tells us which scheme we should use!

Stan, Romaniello, Rigamonti, Reining, AB, New J. Phys. 17, 093045 (2015)

Uniqueness of the map $G_{0} \leftarrow G$
Σ is a well-defined functional of $G_{0}: \Sigma\left[G_{0}\right]$. In practice $\Sigma[G]=\Sigma\left[G_{0}[G]\right]$: sum rules and conservation laws.
$\Sigma[G]$: the map $G_{0} \leftarrow G$ should be unique

Uniqueness of the map $G_{0} \leftarrow G$

Σ is a well-defined functional of $G_{0}: \Sigma\left[G_{0}\right]$.
In practice $\Sigma[G]=\Sigma\left[G_{0}[G]\right]$: sum rules and conservation laws.
$\Sigma[G]$: the map $G_{0} \leftarrow G$ should be unique
Numerical calculations on Hubbard atom with two iterative schemes. y axis corresponds to double occupancy

Kozik, Ferrero, Georges, PRL 114, 156402 (2015)
A careful definition of the domain of G_{0} and G is missing \longrightarrow unphysical solutions

The map $G_{0} \leftarrow G$ in the OPM
Exact self-energy: $\tilde{s}\left[z_{0}\right]=-\frac{1}{2} u z_{0}$ Dyson equation: $z_{0}=y+\frac{1}{2} v y z_{0}^{2}$
y is known and z_{0} is to be determined.

The map $G_{0} \leftarrow G$ in the OPM
Exact self-energy: $\tilde{s}\left[z_{0}\right]=-\frac{1}{2} u z_{0}$
Dyson equation: $z_{0}=y+\frac{1}{2} v y z_{0}^{2}$
y is known and z_{0} is to be determined.
Two solutions:

$$
\begin{aligned}
& z_{0}^{ \pm}=\frac{1}{v y}\left(1 \pm \sqrt{1-2 v y^{2}}\right) \underbrace{\Longrightarrow}_{Z_{0}=z_{0} / y_{0} ; V=v y_{0}^{2}} Z_{0}^{ \pm}=\frac{2+V \pm \sqrt{(2-V)^{2}}}{2 V},
\end{aligned}
$$

The sign of the square root has to be changed to stay on physical solution!
Stan, Romaniello, Rigamonti, Reining, AB, New J. Phys. 17, 093045 (2015)
Rossi and Werner, J. Phys. A 48, 485202 (2015)

Iteration schemes

Two possible iterative schemes (same as Kozik et al.) are

$$
\begin{align*}
& \frac{1}{Z_{0}^{(n+1)}}=1+\frac{1}{2} V\left(1-Z_{0}^{(n)}\right) \tag{A}\\
& \frac{1}{Z_{0}^{(n+1)}}=-1-\frac{1}{2} V\left(1-Z_{0}^{(n)}\right)+\frac{2}{Z_{0}^{(n)}} \tag{B}
\end{align*}
$$

We should change iteration scheme at $V=2$!
OPM: polarizability χ is critical quantity: changes sign at $V=2$.
Stan, Romaniello, Rigamonti, Reining, AB, New J. Phys. 17, 093045 (2015)
Rossi and Werner, J. Phys. A 48, 485202 (2015)

The multi-channel Dyson equation

Coupling G_{1} with G_{3} :

The multi-channel self-energy $\Sigma_{3}\left(v_{c}\right)$:

The multi-channel Dyson equation

Coupling G_{1} with G_{3} :

The multi-channel self-energy $\Sigma_{3}\left(v_{c}\right)$:

Riva, Romaniello, AB, Phys. Rev. Lett. 131, 216401 (2023)
In one point:

$$
\left(\begin{array}{ll}
y_{1} & y_{c} \\
\tilde{y}_{c} & y_{3}
\end{array}\right)=\left(\begin{array}{cc}
y_{0} & 0 \\
0 & y_{0}^{3} / 2
\end{array}\right)+\left(\begin{array}{cc}
y_{0} & 0 \\
0 & y_{0}^{3} / 2
\end{array}\right)\left(\begin{array}{cc}
0 & 2 v \\
2 v & 10 v
\end{array}\right)\left(\begin{array}{ll}
y_{1} & y_{c} \\
\tilde{y}_{c} & y_{3}
\end{array}\right)
$$

Iteration yields the number of skeleton diagrams at each order in v

$$
s \propto 2 v^{2}+10 v^{2}+50 v^{3}+250 v^{4}+\cdots
$$

Conclusions

- The OPM simplifiies complicated equations such that they can be solved exactly.
- The OPM can be used to analyse the solutions of these equations
- The OPM can be used to detect and analyse potential problems in finding the physical solution.

