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Motivation

One-point model (OPM): One point in space, time and spin.

» functions become variables and functionals become functions.

f(ryo,t) = f
Flg(r,o,t)] — F(g)

» Integrals and sums can be dropped.
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One-point model (OPM): One point in space, time and spin.

» functions become variables and functionals become functions.

f(ryo,t) = f
Flg(r,o,t)] — F(g)

» Integrals and sums can be dropped.

Features
» retains the structure of the full equations

> insight into the solutions of complicated equations (Kadanaff-Baym;
Hedin)

» physics much reduced



Hedin's equations

A closed set of equations for the one-body Green's function.

G(1,2) = Gu(1,2) + Gu(1,3).c(3,4)G(4,2)

To(1,2) = iG(3,2) W(4,2)l(4,1,3)

W(1,2) = ve(1,2) + ve(1,3)P(3,4)W(4,2)
P(1,2) = —iG(2,3)G(4,2)I(1,3,4)

5%e(2,3)

F(1,2,3) = 0(1,2)3(1,3) + G(4.5)6(6,7) 5o, 5

r(1,5,6)



Hedin's equations in one point
Gy, Y>> W—ouvesv,P—>p T —g

Y =YH + YHSxcY
Sc = yug
u=v-+vpu
p=+y’g
dsxc(y) 2

=1 _
g + dy Yy g
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Molinari found a perturbative solution using the + sign (yn = 1):
S=vVH+Se=2v+10v° + 74V +706v* + - ..

The prefactors equal the number of diagrams at each order in v.

Pavlyukh and Hiibner found an implicit solution of Hedin's equations (4 sign).

Molinari, PRB 71, 113102 (2005); Molinari and Manini, EPJB 51, 331 (2006)
Pavlyukh and Hiibner, J. Math. Phys. 48, 052109 (2007)



Kadanoff-Baym equation

A closed equation for the 1-GF is given by the Kadanoff-Baym equation:

G(L,2[¢]) = Go(172)+/d3Go(1»3)VH(3; [PD)G(3,2: [¢])

+ [ 436090366214 + [ 53461, 3we(3 4 *CEZLD

The equilibrium Green's function: G(1,2) = G(1,2;[¢ = 0])



Kadanoff-Baym equation

A closed equation for the 1-GF is given by the Kadanoff-Baym equation:

G(L,2[¢]) = Go(172)+/d3Go(1»3)VH(3; [PD)G(3,2: [¢])

5G(3,2i[¢])

/d3Go(1 3)(3)G(3,2; [¢]) + /d34Go (1,3)ve(3",4) 50(d)

The equilibrium Green's function: G(1,2) = G(1,2;[¢ = 0])
Functional differential equation is nonlinear due to vy = —ivG.

Linearize vy around ¢ = 0.

6(1.2:[4) = Gu(1.2) + [ d36u(1,3)5(3)6(3,2:[¢))

3G(3,2; [2])

+i/d34GH(1,3)W(3+,4) 55()

with W =€e"tvand g =€ ¢

Lani, Romaniello, Reining, New J. Phys. 14, 013056 (2012)



linearized Kadanoff-Baym equation

Linearized KBE in one point

y(x) = yu + yuxy(x) + uyny'(x).

General solution (x = 0):

T 1 1
Yu = — Zexp {m] {erf <\/:y02> +C(yH,U)}



linearized Kadanoff-Baym equation

Linearized KBE in one point

y(x) = yu + yuxy(x) + uyny'(x).

General solution (x = 0):

m 1 [ 1
2ueXp {m] {erf( 2uy02> + C(yH, U)}

imy,=yy — C=-1
u—0

Yu=—

Initial condition:

Physical solution

=/ =ex L erf 1 -1
Yohys = 2uP 2uy? 2uy?

Lani, Romaniello, Reining, New J. Phys. 14, 013056 (2012)




GW and self-consistency
In one point

Y =YH + YHSxcY
Sy = —uy
Quadratic equation:

+/1+44uy? —1

2
= — — =
y YH ynuy Yu 5 uyH

Physical solution: + (limy—o yu = yn)
Unphysical solution: - (limy—o yu # yH)



GW and self-consistency

In one point

Y =VYH + YHSxcY

Sxe = —uy
Quadratic equation:

+/1+44uy? —1

Y =y —ynuy’ = yu=
2uyH

Physical solution: + (limy—o yu = yn)
Unphysical solution: - (limy—o yu # yH)

In practice one iterates to obtain the self-consistent solution.

(n+1) _ _ (n) -1 (n+1) __ YH .
G =(1-X[G"|GH) "Gy — y = 15wy @ —  physical
T [G = Gt [T Y = 1 + L —  unphysical
uyH uy(")

Lani, Romaniello, Reining, New J. Phys. 14, 013056 (2012)



GW: exact solutions
So far u (W) and yy (Gn) were fixed.
What happens if we remove these constraints?
% Yo

Ll:]-_'_vy2 szil_'—yovy
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_ v _ Yo
u_1+vy2 yH 1+ yovy
The GW Dyson equation in one point is a quartic equation
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GW: exact solutions

So far u (W) and yy (Gn) were fixed.
What happens if we remove these constraints?

u=—r yi=—2
1+ vy? 1+ yovy
The GW Dyson equation in one point is a quartic equation
yo(1+ vy?)

__\rTvy) _ -1 _1
C 1wy vty (G [Go™ = aul )

Four solutions: 1 physical + 3 unphysical :

yozv (arb. units)

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)



GW: iterative solution

Usually the GW Dyson equation is solved iteratively:

yo(1 + vy7) 1 1
bl = ———— G=[G, — X
Ynt1 1—|—vy,3+yov2y,§ ( [ 0 GW] )



GW: iterative solution
Usually the GW Dyson equation is solved iteratively:
yo(1+ vyz) ( -1 —1
1l = —————— G=[G, —X )
I T T WE + yoviyi [Go ow]

Results :

¥y,

y02V (arb. units)

Beyond a certain interaction strength the iterative result is not equal to
physical result

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)



Attracting and repelling fixed points

Attracting fixed point: iteration converges to yew

Repelling fixed point: iteration does not converge to ycw



Attracting and repelling fixed points

Attracting fixed point: iteration converges to yew

Repelling fixed point: iteration does not converge to ycw

yew is attracting when ygv < 4 yew is repelling when ygv > 4

1

0.8

0.6

¥y,

0.4

0.2

¥,V (arb. units)

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)



Alternative iteration schemes

Iteration schemes that do converge to yew for all v are:

yo(1 + 2vy?)

G=Gy+ GXewG
1+ yovya + vy? + yoviys ( o+ GoZowC)

Yny1 =



Alternative iteration schemes

Iteration schemes that do converge to yew for all v are:

yo(1 + 2vy?)

G=Gy+ GXewG
1+ yovya + vy? + yoviys ( o+ GoZowC)

Yny1 =

Or iterate y for fixed u, update v, iterate y, etc.:

__ Vv _(1_ -1
Un =77 72 (W (1 - v.GG) vc)
- Y e 1
Yn+1 = 1 +y0(v — Un))’n (G [GO ):GWﬁxed] )

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)



The full KBE

Full (non-linearized) KBE in one point (¢ — z):

¥(2) = yo — voy*(2) + yozy(2) + vyoy'(2).



The full KBE

Full (non-linearized) KBE in one point (¢ — z):
¥(2) = yo = vyoy*(2) + yozy(2) + vyoy'(2)-

General solution (z = 0):

-1
C 1 55 by 1
— + Se | Cy) —erf | ——| —1
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The full KBE

Full (non-linearized) KBE in one point (¢ — z):
¥(2) = yo = vyoy*(2) + yozy(2) + vyoy'(2)-

General solution (z = 0):

-1
C 1 55 by 1

— + Se | Cy) —erf | ——| —1

w e (Va1

The physical solution should tend to yo when v — O:

yw=y—-C

Yphys = Y0 (C=0)

One point KBE: perfect cancellation between the two terms containing v.
Full functional problem: partial cancellation.

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)



Generalized KBE in the one-point model

To mimic the partial cancellation in one point we introduce a parameter A:

¥(z) = yo — voy’(2) + yozy(z) + Avyoy'(2).



Generalized KBE in the one-point model

To mimic the partial cancellation in one point we introduce a parameter A:

¥(z) = yo — voy’(2) + yozy(z) + Avyoy'(2).

The physical solution for A = %:

2yo

g

Dyson equation:
1
Y =Yo+yosy — SZ—EV)’O

The exact self-energy is a functional of yp.

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)



Comparison to approximate methods

A=1

0.9

0.8

¥y,

0.7

0.6

Linear

0.4 L

1 1 1
0 0.2 0.4 0.6 0.8
yozv (arb. units)

L 1 1 1
0.2 0.4 0.6 0.8 1
2 .
Yo V (arb. units)

Whgpa = (1 — VCGG)_IVC

In one point G obtained from the linearized KBE can best be combined with

Whkrea

AB, Romaniello, Tandetzky, Mendoza, Brouder, Reining, New J. Phys. 16, 113025 (2014)
Tarantino, Mendoza, Romaniello, AB, Reining, J. Phys Condens. Matter 20, 135602 (2018)



Real life: absorption spectrum of LiF from TDDFT

Does this problem occur in real life?

e(w) = (1+ vex(w)) ™

where

xX(w) = xo(w) + xo(w) frxe [X]x (w)
1+ vex(w =0)

bootstrap kernel
Xo(w = 0) P

foc [X] = Vc+

25

Experiment ——
Physical solution ——
201 Unphysical solution (x 20) -+ ]

16 18 20
) Energy [eV]
The OPM tells us which scheme we should use!

Stan, Romaniello, Rigamonti, Reining, AB, New J. Phys. 17, 093045 (2015)



Uniqueness of the map Gy + G

Y is a well-defined functional of Gp: X[Gy].
In practice X[G] = X[Go[G]]: sum rules and conservation laws.

¥ [G]: the map Gy < G should be unique



Uniqueness of the map Gy + G

Y is a well-defined functional of Gp: X[Gy].
In practice X[G] = X[Go[G]]: sum rules and conservation laws.

¥ [G]: the map Gy < G should be unique

Numerical calculations on Hubbard atom with two iterative schemes.
y axis corresponds to double occupancy

0.2
~napesassamniies
onm™®

0.1

LG/ AU
g

—0.1 ¢
[ — Exactsolution
."' s—a Scheme A
—03 . =—s Scheme B
0 1 2 3 4 5

u
Kozik, Ferrero, Georges, PRL 114, 156402 (2015)

A careful definition of the domain of Gy and G is missing — unphysical
solutions



The map Gy < G in the OPM
Exact self-energy: §[z] = —uz
Dyson equation: zp =y + %vyzg

y is known and z is to be determined.



The map Gy < G in the OPM
Exact self-energy: §[z] = —%uzo
Dyson equation: zp =y + %vyzg

y is known and z is to be determined.

Two solutions:

1 2+ V42V
zoi:v—y(lzlzs/l—2vy2> — ozt 2v( s

Zo=20/yo;V=vyg

30T T T T T T
r =« Z; (scheme A)
. « « Z;(scheme B) 0? -
. Yo mlE T
21 . o Y
. by
- ¢ 37/ L YI\"F
N . h
.. 2 4 6 8
*.
] —— 1
0 2 3 4 5 6

The sign of the square root has to be changed to stay on physical solution!

Stan, Romaniello, Rigamonti, Reining, AB, New J. Phys. 17, 093045 (2015)
Rossi and Werner, J. Phys. A 48, 485202 (2015)



Iteration schemes

Two possible iterative schemes (same as Kozik et al.) are

1 1 n
Z (D) =1+ 5\/(1 - Zé )) (A),
0
1 1
=—1-Zva-Z"M+ (B).
n+1 0 n
=17 Z
3 T T T T
- Z“’(scheme A)
L. « « Z (scheme B) Oj
. Y, -1 P

We should change iteration scheme at V = 2!
OPM: polarizability x is critical quantity: changes sign at V = 2.

Stan, Romaniello, Rigamonti, Reining, AB, New J. Phys. 17, 093045 (2015)
Rossi and Werner, J. Phys. A 48, 485202 (2015)



The multi-channel Dyson equation

Coupling G; with Gs:

o 1) | ol N




The multi-channel Dyson equation

B =) =) A
= = g

The multi-channel self-energy ¥3(vc)

IIIIIIIIIII /

Riva, Romaniello, AB, Phys. Rev. Lett. 131, 216401 (2023)

Coupling G; with Gs:

+

In one point:

ioye\_ (» 0 " Yo 0 0 2v iYe
Je s 0 ¥%/2 0 y5/2)\2v 10v) \jc s
Iteration yields the number of skeleton diagrams at each order in v

s 2v2+ 10v2 +50v3+250v4+~--



Conclusions

» The OPM simplifiies complicated equations such that they can be solved
exactly.

» The OPM can be used to analyse the solutions of these equations

» The OPM can be used to detect and analyse potential problems in finding
the physical solution.



