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Overview

1 The Hubbard and Anderson impurity models

2 Green’s functions and derivatives

3 Dynamical Mean-Field Theory hand-wavy

4 Well-posedness of IPT-DMFT
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The finite Hubbard model in one slide

Interacting model for the π-electrons
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The finite Hubbard model in one slide

(a) The Pariser-Parr-Pople model of
benzene : the Hubbard model on the C6
graph.

Start with a graph
G = (Λ,E ).

One-site Fock space
F1 = Vect(|0〉, | ↑〉, | ↓〉, | ↑↓〉)
Sites are distinguishable :
FH =

⊗
i∈ΛFi

Electrons jump :
Ĥ0 =

∑
i ,j∈E hi ,j â†i ,σâj,σ′

Electrons repel locally
Ĥ1 =

∑
i∈Λ Ui n̂i ,↑n̂i ,↓

The Hubbard Hamiltonian
ĤH = Ĥ0 + Ĥ1
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The finite Hubbard model in one slide

(a) The Pariser-Parr-Pople model of
benzene : the Hubbard model on the C6
graph.

Analytic solutions : [Lieb, 2001]
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The finite Anderson impurity model in one slide (AIM)

Himp

Hbath

(a) The Anderson impurity model : an
impurity (Hubbard like) and an electronic
bath (conducting electrons, σ-electrons)

Bath Fock space:
Fbath = F(Hbath)

AIM Fock space:
FAIM = Fimp ⊗Fbath,
Fimp = FH

Bath has energy levels:
Ĥ0

bath =
∑

k∈bath εk n̂k

Bath interacts with impurity:
Ĥint =

∑i∈Λ
k∈bath Vk,i â†k âi ,σ

AIM non interacting:
Ĥ0

AIM = Ĥ0
H + Ĥ0

bath + Ĥint

AIM Hamiltonian:
ĤAIM = Ĥ0

AIM + Ĥ1
H
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AIM non interacting:
Ĥ0
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Ĥint =

∑i∈Λ
k∈bath Vk,i â†k âi ,σ
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H + Ĥ0
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Ĥ0

bath =
∑

k∈bath εk n̂k

Bath interacts with impurity:
Ĥint =

∑i∈Λ
k∈bath Vk,i â†k âi ,σ
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Disclaimer

Green’s functions are not
Green’s functions.
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Disclaimer

Quantum physics Green’s functions (Propagators) are not
always mathematical Green’s functions (Fundamental solution associated to a Linear

Differential Operator).
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Quantum physics Green’s functions

Heisenberg picture : H(O)(t) = e−itĤOe−itĤ .
State is a linear form on operators Γ(O) = Tr(ρO), ρ2 ≤ ρ, equilibrium [ρ, Ĥ] = 0

Definition (Green’s functions)

The one-body time-ordered Green’s function G̃ of a quantum system H, Ĥ in a state Γ
is the matrix-valued function with

i G̃iσ,jσ′(t) = Θ(t)Γ(H(âi ,σ)(t)â†j,σ′) + Θ(−t)Γ(H(â†j,σ′)(t)âi ,σ)

Quantum physics Green’s functions are explicitly defined.
Enough to compute many observables : average energy (Galitski-Migdal),
conduction behaviour, Chern number, etc.
Experimentally ”measurable” : ARPES (see Lucia’s talk)
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is the matrix-valued function with

i G̃iσ,jσ′(t) = Θ(t)Γ(H(âi ,σ)(t)â†j,σ′)︸ ︷︷ ︸
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is the matrix-valued function with

i G̃iσ,jσ′(t) = Θ(t)Γ(H(âi ,σ)(t)â†j,σ′)︸ ︷︷ ︸
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Definition (Green’s functions)

The one-body time-ordered Green’s function G̃ of a quantum system H, Ĥ in a state Γ
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Fourier quantum physics Green’s functions

If dim(H) is finite, G̃ is oscillatory (Lehmann-Källen’s representation).

Definition (Generalized Fourier transform)

The Generalized Fourier transform [Titchmarsh,1948] of G̃ is the map G defined for
z ∈ C+ by

G(z) =
∫
R+

eiztG̃(t)dt +
∫
R−

ei z̄tG̃(t)dt

Well-defined and invertible.
−G : C+ → C+ and analytic : Herglotz functions.

a.k.a Pick, Nevanlinna, Riesz, Weyl, Titchmarsh, R-function
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Green’s functions without interaction

Non-interacting Green’s function
The non-interacting Green’s function G0 is the Green’s function of (H, Ĥ0, Γ).

Non-interacting Green’s functions are Green’s functions

Assume Ĥ0 =
∑

i ,j hi ,j â†i âj . Then, the non-interacting Green’s function G0 is the
resolvent of h :

G0(z) = (z − h)−1.

In the time domain, equivalent to (i∂t − h) G̃0 = δ.
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DMFT ustensil : the self-energy Σ.

Definition (Self-energy)

The self-energy Σ associated to (H, Ĥ, Γ) is the map defined for all z ∈ C+ by

Σ(z) =
(
G0(z)

)−1 − G(z)−1. (1)

Etymology : (1) ⇐⇒ G(z) = (z − (h +Σ(z)))−1

−Σ is a Herglotz function.
If dim(H) is finite (see M.Lindsey’s thesis),∃ak ∈ S(C)+, εk ∈ R s.t. ∀z ∈ C+,

Σ(z) = ΣHF +
?∑
k

1
z − εk

ak (2)
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DMFT ustensil : the hybridization function ∆.

DMFT is formulated with Green’s functions blocks : for an Anderson impurity model
we have

G0
imp = (z − h)−1

imp =

(
z − himp −

Bathsize∑
k=1

1
z − εk

VkV †
k

)−1

(3)

Definition (Hybridization function)
The hybridization function ∆ associated to an Anderson impurity model is the
matrix-valued map defined for all z ∈ C+ by

∆(z) =
Bathsize∑

k=1

1
z − εk

VkV †
k (4)

∆ fully characterizes the bath and its coupling to the impurity
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matrix-valued map defined for all z ∈ C+ by

∆(z) =
Bathsize∑

k=1

1
z − εk

VkV †
k (4)

∆ fully characterizes the bath and its coupling to the impurity
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DMFT recipe: from one Hubbard to several small Anderson

∆1?

∆2?

∆3?

G =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗



DMFT recipe : find the Greens function G of a Hubbard model (FH , ĤH) in a state Γ.
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DMFT recipe: from one Hubbard to several small Anderson

∆1?

∆2?

∆3?

∆1?

∆2?

∆3?

G =



∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗



Step 1 : partition the vertices Λ = tN
i=1Λi of the original Hubbard graph G = (Λ,E )

and focus on the blocks (Gi)i=1,N .
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∆1?

∆2?

∆3?

G =



G1
∗ ∗ ∗
∗ G2 ∗
∗ ∗ ∗

G3 ∗
∗ ∗
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DMFT recipe: from one Hubbard to several small Anderson

∆1?

∆2?

∆3?

∆1?

∆2?

∆3?

G =



G1
∗ ∗ ∗
∗ G2 ∗
∗ ∗ ∗

G3 ∗
∗ ∗



Step 2 : Define Gi = (Λi ,Ei), Ei = {{k, l} ∈ E , k, l ∈ Λi}
G of ĤH with Gi 6= Gi of ĤH with G ! Even if not interacting !
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DMFT recipe: from one Hubbard to several small Anderson

∆1?

∆2?

∆3?

∆1?

∆2?

∆3?

G =



G1
∗ ∗ ∗
∗ G2 ∗
∗ ∗ ∗

G3 ∗
∗ ∗



Step 3 : define Gimp,i of an Anderson impurity model with an electronic bath for each
impurity
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DMFT recipe: from one Hubbard to several small Anderson

∆1?

∆2?

∆3?

∆1?

∆2?

∆3?

∆1

∆3

∆2

G =



G1
∗ ∗ ∗
∗ G2 ∗
∗ ∗ ∗

G3 ∗
∗ ∗



Step 3 : define Gimp,i of an Anderson impurity model with an electronic bath for each
impurity (∆i)i=1,N .
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DMFT recipe: from one Hubbard to several small Anderson

∆1?

∆2?

∆3?

∆1?

∆2?

∆3?

∆1?

∆3?

∆2?

G =



G1
∗ ∗ ∗
∗ G2 ∗
∗ ∗ ∗

G3 ∗
∗ ∗



Step 3 : define Gimp,i of an Anderson impurity model with an electronic bath for each
impurity (∆i)i=1,N . Which one ?
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Self-consistent equation on (∆i)

Question : (∆i) ?

First answer : s.t. Gimp,i = Gi of ĤH of G.
DFMT answer : s.t. Gimp,i = GDMFT,i .
Requirement : GDMFT = G0 if not interacting (exact)
⇐⇒ ΣDMFT = (G0)−1 − G−1

DMFT = 0.
DMFT self-consistency : GDMFT =

(
(G0)−1 − ΣDMFT

)−1 with ΣDMFT

ΣDMFT (5)
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Self-consistent equation on (∆i)

Question : (∆i) ?
First answer : s.t. Gimp,i = Gi? of ĤH of G. Unknown ! 7

DFMT answer : s.t. Gimp,i = GDMFT,i .
Requirement : GDMFT = G0 if not interacting (exact)
⇐⇒ ΣDMFT = (G0)−1 − G−1
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Self-consistent equation on (∆i)

Question : (∆i) ?
First answer : s.t. Gimp,i = Gi? of ĤH of G. Unknown ! 7

DFMT answer : s.t. Gimp,i = GDMFT,i . GDMFT ?
Requirement : GDMFT = G0 if not interacting (exact)
⇐⇒ ΣDMFT = (G0)−1 − G−1

DMFT = 0.

DMFT self-consistency : GDMFT =
(
(G0)−1 − ΣDMFT

)−1 with ΣDMFT

ΣDMFT (5)
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Self-consistent equation on (∆i)

Question : (∆i) ?
First answer : s.t. Gimp,i = Gi? of ĤH of G. Unknown ! 7

DFMT answer : s.t. Gimp,i = GDMFT,i . GDMFT ?
Requirement : GDMFT = G0 if not interacting (exact)
⇐⇒ ΣDMFT = (G0)−1 − G−1

DMFT = 0.
DMFT self-consistency : GDMFT =

(
(G0)−1 − ΣDMFT

)−1 with ΣDMFT

ΣDMFT =
N⊕

i=1
Σimp,i (5)
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Self-consistent equation on (∆i)

Question : (∆i) ?
First answer : s.t. Gimp,i = Gi? of ĤH of G. Unknown ! 7

DFMT answer : s.t. Gimp,i = GDMFT,i . GDMFT ?
Requirement : GDMFT = G0 if not interacting (exact)
⇐⇒ ΣDMFT = (G0)−1 − G−1

DMFT = 0.
DMFT self-consistency : GDMFT =

(
(G0)−1 − ΣDMFT

)−1 with ΣDMFT

ΣDMFT =



Σimp,1
∗ ∗ ∗
∗ Σimp,2 ∗
∗ ∗ ∗

Σimp,3 ∗
∗ ∗

 (5)
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The impurity solver : ∆i → Σimp,i

Impurity solver : ∆i → Σi for each impurity.

One theoretical, many in practical computations : (IPT), continuous-time Monte
Carlo, exact diagonalisation etc.
Doesn’t require a (H, Ĥ) formulation (!)
Computationally expensive part of DMFT.
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Computationally expensive part of DMFT.

A.Kirsch Mathematical insights on DMFT



The impurity solver : ∆i → Σimp,i

Impurity solver : ∆i → Σi for each impurity.

One theoretical, many in practical computations : Iterated Perturbation Theory
(IPT), continuous-time Monte Carlo, exact diagonalisation etc.
Doesn’t require a (H, Ĥ) formulation (!)
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The impurity solver : ∆i → Σimp,i

Impurity solver : ∆i → Σi for each impurity.

One theoretical, many in practical computations : Iterated Perturbation Theory
(IPT), continuous-time Monte Carlo, exact diagonalisation etc.
Doesn’t require a (H, Ĥ) formulation (!)
Computationally expensive part of DMFT.

For each impurity, Σi = IPT(∆i)
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DMFT equations (1)

We are looking for ∆i such that for all z ∈ C+,

Gimp,i(z) = GDMFT ,i(z) (6)
(7)
(8)
(9)
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DMFT equations (1)

We are looking for ∆i such that for all z ∈ C+,

Gimp,i(z) = GDMFT ,i(z) (6)
G−1

imp,i(z) = G−1
DMFT ,i(z) (7)

(8)
(9)
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DMFT equations (1)

We are looking for ∆i such that for all z ∈ C+,

Gimp,i(z) = GDMFT ,i(z) (6)
G−1

imp,i(z) = G−1
DMFT ,i(z) (7)([

(z − hAIM,i − ΣAIM,i(z))−1
]

imp

)−1
=

(z − h −
N⊕

i=1
Σi(z)

)−1
i

−1

(8)

(9)
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DMFT equations (1)
We are looking for ∆i such that for all z ∈ C+,

Gimp,i(z) = GDMFT ,i(z) (6)
G−1

imp,i(z) = G−1
DMFT ,i(z) (7)([

(z − hAIM,i − ΣAIM,i(z))−1
]

imp

)−1
=

(z − h −
N⊕

i=1
Σi(z)

)−1
i

−1

(8)

(9)

Schur-Levitt
complement !
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DMFT equations (1)

We are looking for ∆i such that for all z ∈ C+,

Gimp,i(z) = GDMFT ,i(z) (6)
G−1

imp,i(z) = G−1
DMFT ,i(z) (7)([

(z − hAIM,i − ΣAIM,i(z))−1
]

imp

)−1
=

(z − h −
N⊕

i=1
Σi(z)

)−1
i

−1

(8)

z − hi − Σi(z)−∆i(z) = z − hi − Σi(z)−hi ,̄i

z − hī −
N⊕

j 6=i ,j=1
Σj(z)

−1

h†
i ,̄i (9)
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DMFT equations (2)

DMFT equations : for all i = 1,N

∆i = hi ,̄i

· − hī −
N⊕

j 6=i ,j=1
Σj

−1

h†
i ,̄i , (Σi)i=1,N 7→ ∆i (Self-consistent, global)
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N⊕
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Σj
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h†
i ,̄i , (Σi)i=1,N 7→ ∆i (Self-consistent, global)

Σi = IPT(∆i) , ∆i 7→ Σi (IPT equation, local)

with IPT as an impurity solver.
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DMFT unknowns : ∆i ∈ Di , Σi ∈ Si

A.Kirsch Mathematical insights on DMFT



DMFT equations (2)

DMFT equations : for all i = 1,N

∆i = hi ,̄i

· − hī −
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j 6=i ,j=1
Σj

−1

h†
i ,̄i , (Σi)i=1,N 7→ ∆i (Self-consistent, global)

Σi = IPT(∆i) , ∆i 7→ Σi (IPT equation, local)

with IPT as an impurity solver.
DMFT unknowns : ∆i ∈ Di , Σi ∈ Si ?
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DMFT equations (2)

DMFT equations : for all i = 1,N

∆i = hi ,̄i

· − hī −
N⊕

j 6=i ,j=1
Σj

−1

h†
i ,̄i , (Σi)i=1,N 7→ ∆i (Self-consistent, global)

Σi = IPT(∆i) , ∆i 7→ Σi (IPT equation, local)

with IPT as an impurity solver.
DMFT unknowns : ∆i ∈ Di , Σi ∈ Si ?

Mathematical question : D,S s. t. well posed and existing solution ?
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Self-coherent equation well-posedness for finite bath

Finite bath dimension well-posedness (L. Lin, M. Lindsey, R. Schneider, 2019)
Assume ∀i = 1, n, ∃Ci ∈ SNi (C), Li ∈ N, ∀k = 1, Li , ak ∈ SNi (C)+, εk ∈ R s.t.
∀z ∈ C+,

Σi(z) = Ci +

Li∑
k=1

1
z − εk

ak (10)

Then ∀i = 1,N, ∆i is well-defined and there exists L̃i ∈ N,
∀k = 1, L̃i , ãk ∈ SNi (C)+, ε̃k ∈ R s.t. ∀z ∈ C+,

∆i(z) =
L̃i∑

k=1

1
z − ε̃k

ãk (11)
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Self-coherent equation well-posedness for finite bath

Finite bath dimension well-posedness (L. Lin, M. Lindsey, R. Schneider, 2019)
Assume ∀i = 1, n, ∃Ci ∈ SNi (C), Li ∈ N, ∀k = 1, Li , ak ∈ SNi (C)+, εk ∈ R s.t.
∀z ∈ C+,

Σi(z) = Ci +

Li∑
k=1

1
z − εk

ak (10)

Then ∀i = 1,N, ∆i is well-defined and there exists L̃i ∈ N,
∀k = 1, L̃i , ãk ∈ SNi (C)+, ε̃k ∈ R s.t. ∀z ∈ C+,

∆i(z) =
L̃i∑

k=1

1
z − ε̃k

ãk (11)

Issue : L̃i > Li , no finite bath solution with IPT
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Self-coherent equation well-posedness for any bath

Extension : Σ(z) = C +
∫
R

1
z−εdµ(ε), µ a S(C)+-valued measure

Proposition : Self-coherent infinite bath well-posedness
Assume ∀i = 1,N, ∃Ci ∈ SNi (C)+ and µi a SNi (C)+-valued measure (with
integrability condition), s.t. ∀z ∈ R,

Σi(z) = Ci +

∫
R

1
z − ε

dµi(ε) (12)

Then ∀i = 1,N, ∆i is well-defined and there exists νi a finite SNi (C)+-valued measure
such that

∆i(z) =
∫
R

1
z − ε

dνi(ε) (13)
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The IPT solver

In the litterature : only found with N = |Λ| (one site per impurity), with Γ the Gibbs
state at β, µ, using Matsubara’s Green’s functions and frequencies ωn = π(2n+1)

β
Given ∆, IPT proceeds in two steps :

First compute ∀n ∈ N,

Σn =
U
2 + U2

∫ β

0
eiωnτ

(
1
β

∑
n′∈Z

e−iωn′τ
1

iωn′ − himp + µ−∆(iωn′)

)3

dτ (14)

”Analytic continue” it : find Σ : C+ → C+ analytic s.t.

∀n ∈ N,Σ(iωn) = Σn (15)
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In the litterature : only found with N = |Λ| (one site per impurity), with Γ the Gibbs
state at β, µ, using Matsubara’s Green’s functions and frequencies ωn = π(2n+1)

β
Given ∆, IPT proceeds in two steps :

First compute ∀n ∈ N,
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∀n ∈ N,Σ(iωn) = Σn (15)

A.Kirsch Mathematical insights on DMFT



IPT well-posedness (1)

Proposition : IPT first-step well-posedness
Given ν a positive measure (w. integrability conditions) s.t. ∀z ∈ C+,

∆(z) =
∫
R

1
z − ε

dν(ε) (16)

Then ∀n ∈ N, Σn is well-defined and ∃µ a positive and finite measure s.t. ∀n ∈ N,

Σn =
U
2 +

∫
R

1
iωn − ε

dµ(ε) (17)
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IPT well-posedness (2)

Proposition : IPT second-step well-posedness
The analytical continuation problem

Find Σ : C+ → C+ analytic s.t. ∀n ∈ N,Σ(iωn) = Σn (18)

admits a unique solution if
∆ represents a bath of finite dimension
ν is compactly supported

Solution : ν finite, (probably not compactly supported) ...
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Conclusion

Ongoing :
Necessary conditions on the solution.
Functional equation on the density of ν if ν � Lebesgue.
Convergence study : which topology ?
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