Nuclear superfluidity The Pairing Hamiltonian as a many-body testbed

MSQM 2024

Workshop on model systems in quantum mechanics January 12th, 2024

Alexander Tichai

Technische Universität Darmstadt

Outline

Outline

Nuclear phenomenology

- Odd-even staggering of experimental binding energies along isotopic chains
- Three-point mass differences give estimate for the (neutron) pairing gap

$$\Delta_N^{(3)} = \frac{(-1)^N}{2} \left(E_{N+1} - 2E_N + E_{N-1} \right)$$

• Experimental evidence of formation of Cooper pairs in atomic nuclei

short-range attractive two-body interaction

• Nuclear phenomenology emerges from interplay of pairing and deformation

→ see also talk by **D.** Lacroix

Nuclear masses of tin isotopes (AME2020)

• One-parameter interaction describing superfluidity

$$H_{\text{pairing}} = \sum_{p} \epsilon_{p} \left(c_{p}^{\dagger} c_{p} + c_{\bar{p}}^{\dagger} c_{\bar{p}} \right) + g \sum_{pq} c_{p}^{\dagger} c_{\bar{p}}^{\dagger} c_{\bar{q}} c_{q}$$

• Generation of a pair of time-reversed states

$$|p\rangle = |n_p l_p j_p m_p\rangle \quad \rightarrow \quad |\bar{p}\rangle = |n_p l_p j_p - m_p\rangle$$

• One-parameter interaction describing superfluidity

$$H_{\text{pairing}} = \sum_{p} \epsilon_{p} \left(c_{p}^{\dagger} c_{p} + c_{\bar{p}}^{\dagger} c_{\bar{p}} \right) + g \sum_{pq} c_{p}^{\dagger} c_{\bar{p}}^{\dagger} c_{\bar{q}} c_{q}$$

• Generation of a pair of time-reversed states

$$|p\rangle = |n_p l_p j_p m_p\rangle \quad \rightarrow \quad |\bar{p}\rangle = |n_p l_p j_p - m_p\rangle$$

• Pair operators form a SU(2) quasispin algebra

$$N_{\rho} = c_{\rho}^{\dagger} c_{\rho} + c_{\bar{\rho}}^{\dagger} c_{\bar{\rho}} \qquad P_{\rho}^{\dagger} = c_{\rho}^{\dagger} c_{\bar{\rho}}^{\dagger}$$

• One-parameter interaction describing superfluidity

$$H_{\text{pairing}} = \sum_{p} \epsilon_{p} \left(c_{p}^{\dagger} c_{p} + c_{\bar{p}}^{\dagger} c_{\bar{p}} \right) + g \sum_{pq} c_{p}^{\dagger} c_{\bar{p}}^{\dagger} c_{\bar{q}} c_{q}$$

• Generation of a pair of time-reversed states

$$|p\rangle = |n_p l_p j_p m_p\rangle \quad \rightarrow \quad |\bar{p}\rangle = |n_p l_p j_p - m_p\rangle$$

• Pair operators form a SU(2) quasispin algebra

$$N_{\rho} = c_{\rho}^{\dagger} c_{\rho} + c_{\bar{\rho}}^{\dagger} c_{\bar{\rho}} \qquad P_{\rho}^{\dagger} = c_{\rho}^{\dagger} c_{\bar{\rho}}^{\dagger}$$

• Representation in quasispin algebra

$$H_{\text{pairing}} = \sum_{p} \epsilon_{p} N_{p} + g \sum_{pq} P_{p}^{\dagger} P_{q}$$

• One-parameter interaction describing superfluidity

$$H_{\text{pairing}} = \sum_{p} \epsilon_{p} \left(c_{p}^{\dagger} c_{p} + c_{\bar{p}}^{\dagger} c_{\bar{p}} \right) + g \sum_{pq} c_{p}^{\dagger} c_{\bar{p}}^{\dagger} c_{\bar{q}} c_{q}$$

• Generation of a pair of time-reversed states

$$|p\rangle = |n_p l_p j_p m_p\rangle \quad \rightarrow \quad |\bar{p}\rangle = |n_p l_p j_p - m_p\rangle$$

• Pair operators form a SU(2) quasispin algebra

 $N_{p} = c_{p}^{\dagger}c_{p} + c_{\bar{p}}^{\dagger}c_{\bar{p}} \qquad P_{p}^{\dagger} = c_{p}^{\dagger}c_{\bar{p}}^{\dagger}$

• Representation in quasispin algebra

$$H_{\text{pairing}} = \sum_{p} \epsilon_{p} N_{p} + g \sum_{pq} P_{p}^{\dagger} P_{q}$$

 Admits for a transition to superfluid regime at critical coupling strength

Number of levels
$$\Omega = 8$$
Occupied levels $N_{\rm OCC} = 4$

One-parameter interaction describing superfluidity

• Richardson solution: exact wave function is written from pair creation operators

Richardson, PL (1965), PR (1966)

$$|\Psi\rangle = B_1^{\dagger} \cdot \ldots \cdot B_{\Omega}^{\dagger}|0\rangle \qquad \qquad B_{\alpha}^{\dagger} = \sum_{p=1}^{\Omega} \frac{1}{2\epsilon_p - E_{\alpha}} P_p^{\dagger}$$

• Richardson solution: exact wave function is written from pair creation operators

$$\Psi\rangle = B_1^{\dagger} \cdot \ldots \cdot B_{\Omega}^{\dagger} |0\rangle \qquad \qquad B_{\alpha}^{\dagger} = \sum_{p=1}^{\Omega} \frac{1}{2\epsilon_p - E_{\alpha}} P_p^{\dagger}$$

• Solving coupled system of equations provides unknown pair energies E_a

$$1 - g \sum_{p=1}^{n} \frac{1}{2\epsilon_p - E_\alpha} - 2g \sum_{\beta \neq \alpha}^{\Omega} \frac{1}{E_\beta - E_\alpha} = 0 \quad \forall \alpha = 1, \dots, \Omega$$

• Richardson solution: exact wave function is written from pair creation operators

$$|\Psi\rangle = B_1^{\dagger} \cdot \ldots \cdot B_{\Omega}^{\dagger} |0\rangle \qquad \qquad B_{\alpha}^{\dagger} = \sum_{p=1}^{\Omega} \frac{1}{2\epsilon_p - E_{\alpha}} P_p^{\dagger}$$

• Solving coupled system of equations provides unknown pair energies E_a

$$1 - g \sum_{\rho=1}^{n} \frac{1}{2\epsilon_{\rho} - E_{\alpha}} - 2g \sum_{\beta \neq \alpha}^{\Omega} \frac{1}{E_{\beta} - E_{\alpha}} = 0 \quad \forall \alpha = 1, \dots, \Omega$$

• Final ground-state energy obtained from sum of pair energies

$$E_{gs} = \sum_{\alpha=1}^{\Omega} E_{\alpha}$$

• Richardson solution: exact wave function is written from pair creation operators

$$|\Psi\rangle = B_1^{\dagger} \cdot \ldots \cdot B_{\Omega}^{\dagger} |0\rangle \qquad \qquad B_{\alpha}^{\dagger} = \sum_{p=1}^{\Omega} \frac{1}{2\epsilon_p - E_{\alpha}} P_p^{\dagger}$$

• Solving coupled system of equations provides unknown pair energies E_a

$$1 - g \sum_{p=1}^{n} \frac{1}{2\epsilon_p - E_{\alpha}} - 2g \sum_{\beta \neq \alpha}^{\Omega} \frac{1}{E_{\beta} - E_{\alpha}} = 0 \quad \forall \alpha = 1, \dots, \Omega$$

• Final ground-state energy obtained from sum of pair energies

$$E_{\rm gs} = \sum_{\alpha=1}^{\Omega} E_{\alpha}$$

Modifications are required in case of unpaired particles (non-zero seniority)

• Richardson solution: exact wave function is written from pair creation operators

$$|\Psi\rangle = B_1^{\dagger} \cdot \ldots \cdot B_{\Omega}^{\dagger}|0\rangle \qquad \qquad B_{\alpha}^{\dagger} = \sum_{p=1}^{\Omega} \frac{1}{2\epsilon_p - E_{\alpha}} P_p^{\dagger}$$

 \sim

• Solving coupled system of equations provides unknown pair energies E_a

$$1 - g \sum_{p=1}^{n} \frac{1}{2\epsilon_p - E_\alpha} - 2g \sum_{\beta \neq \alpha}^{\Omega} \frac{1}{E_\beta - E_\alpha} = 0 \quad \forall \alpha = 1, \dots, \Omega$$

• Final ground-state energy obtained from sum of pair energies

$$E_{\rm gs} = \sum_{\alpha=1}^{\Omega} E_{\alpha}$$

- Modifications are required in case of unpaired particles (non-zero seniority)
- Extend full configuration interaction (FCI) capacities: limited to ~20 levels

dynamic correlations

(expansion on top of dominant Slater determinant)

static correlations (collectivity through symmetry projection)

dynamic correlations

(expansion on top of dominant Slater determinant)

(collectivity through symmetry projection)

dynamic correlations

(expansion on top of dominant Slater determinant)

(collectivity through symmetry projection)

dynamic correlations

(expansion on top of dominant Slater determinant)

dynamic correlations

(expansion on top of dominant Slater determinant)

• BCS wave-function ansatz for superfluid system

(Bardeen-Cooper-Schrieffer)

$$|\Phi_{\text{BCS}}\rangle = \prod_{p>0} \left(u_p + v_p c_p^{\dagger} c_{\bar{p}}^{\dagger} \right) |0\rangle$$

BCS wave-function ansatz for superfluid system

(Bardeen-Cooper-Schrieffer)

$$\Phi_{\text{BCS}}\rangle = \prod_{p>0} \left(u_p + v_p c_p^{\dagger} c_{\bar{p}}^{\dagger} \right) |0\rangle$$

BCS state breaks particle-number conservation

 $\hat{A}|\Phi_{BCS}\rangle \neq A_0|\Phi_{BCS}\rangle$

BCS wave-function ansatz for superfluid system

(Bardeen-Cooper-Schrieffer)

$$\Phi_{\text{BCS}}\rangle = \prod_{p>0} \left(u_p + v_p c_p^{\dagger} c_{\bar{p}}^{\dagger} \right) |0\rangle$$

• BCS state breaks particle-number conservation

 $\hat{A}|\Phi_{BCS}\rangle \neq A_0|\Phi_{BCS}\rangle$

• **Constrained minimization subject to:** $tr \rho = A$

 $H \rightarrow H - \lambda A$

BCS wave-function ansatz for superfluid system

(Bardeen-Cooper-Schrieffer)

$$\Phi_{\text{BCS}}\rangle = \prod_{p>0} \left(u_p + v_p c_p^{\dagger} c_{\bar{p}}^{\dagger} \right) |0\rangle$$

• BCS state breaks particle-number conservation

 $\hat{A}|\Phi_{BCS}\rangle \neq A_0|\Phi_{BCS}\rangle$

• **Constrained minimization subject to:** $tr \rho = A$

 $H \rightarrow H - \lambda A$

Solution obtained from solving BCS equations

$$v_{\rho}^{2} = \frac{1}{2} \left(1 - \frac{\xi_{\rho}}{\sqrt{\xi_{\rho}^{2} + \Delta^{2}}} \right)$$
$$\xi_{\rho} = \epsilon_{\rho} - \lambda - g v_{\rho}^{2}$$

BCS wave-function ansatz for superfluid system

(Bardeen-Cooper-Schrieffer)

$$\Phi_{\text{BCS}}\rangle = \prod_{p>0} \left(u_p + v_p \, c_p^{\dagger} c_{\bar{p}}^{\dagger} \right) \left| 0 \right\rangle$$

• BCS state breaks particle-number conservation

 $\hat{A}|\Phi_{\rm BCS}\rangle \neq A_0|\Phi_{\rm BCS}\rangle$

• **Constrained minimization subject to:** $tr \rho = A$

 $H \rightarrow H - \lambda A$

Solution obtained from solving BCS equations

$$v_{\rho}^{2} = \frac{1}{2} \left(1 - \frac{\xi_{\rho}}{\sqrt{\xi_{\rho}^{2} + \Delta^{2}}} \right)$$
$$\xi_{\rho} = \epsilon_{\rho} - \lambda - g v_{\rho}^{2}$$

• HF theory recovered in the limit of vanishing gap

BCS wave-function ansatz for superfluid system

(Bardeen-Cooper-Schrieffer)

$$|\Phi_{\text{BCS}}\rangle = \prod_{p>0} \left(u_p + v_p c_p^{\dagger} c_{\bar{p}}^{\dagger} \right) |0\rangle$$

BCS state breaks particle-number conservation

 $\hat{A}|\Phi_{BCS}\rangle \neq A_0|\Phi_{BCS}\rangle$

• **Constrained minimization subject to:** $tr \rho = A$

 $H \rightarrow H - \lambda A$

Solution obtained from solving BCS equations

$$v_{\rho}^{2} = \frac{1}{2} \left(1 - \frac{\xi_{\rho}}{\sqrt{\xi_{\rho}^{2} + \Delta^{2}}} \right)$$
$$\xi_{\rho} = \epsilon_{\rho} - \lambda - g v_{\rho}^{2}$$

$$\Delta = \langle \Phi_{\text{BCS}} | c_{\rho}^{\dagger} c_{\bar{\rho}}^{\dagger} | \Phi_{\text{BCS}} \rangle = g \sum_{\rho > 0} u_{\rho} v_{\rho}$$

BCS gap parameter

• HF theory recovered in the limit of vanishing gap

• Any broken symmetry must be eventually restored in a finite quantum system

- Any broken symmetry must be eventually restored in a finite quantum system
- Application of particle-number projector restores the broken symmetry

$$P_A = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \, e^{-i\varphi A} \, R(\varphi) \quad \text{with} \quad R(\varphi) = e^{i\varphi \hat{A}}$$

- Any broken symmetry must be eventually restored in a finite quantum system
- Application of particle-number projector restores the broken symmetry

$$P_A = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \, e^{-i\varphi A} \, R(\varphi) \quad \text{with} \quad R(\varphi) = e^{i\varphi \hat{A}}$$

• Gauge-space rotations generate the abelian Lie group U(I)

 $U(1) = \{R(\varphi) : \varphi \in [0, 2\pi]\}$

- Any broken symmetry must be eventually restored in a finite quantum system
- Application of particle-number projector restores the broken symmetry

$$P_A = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \, e^{-i\varphi A} \, R(\varphi) \quad \text{with} \quad R(\varphi) = e^{i\varphi \hat{A}}$$

• Gauge-space rotations generate the abelian Lie group U(I)

 $U(1) = \{R(\varphi) : \varphi \in [0, 2\pi]\}$

• Collectivity: rotation operator mitigates a non-perturbative transformation

 $|\Phi(\varphi)\rangle = R(\varphi)|\Phi\rangle$

rotated state is not a low-rank particle-hole excitation of $|\Phi\rangle$

- Any broken symmetry must be eventually restored in a finite quantum system
- Application of particle-number projector restores the broken symmetry

$$P_A = \frac{1}{2\pi} \int_0^{2\pi} d\varphi \, e^{-i\varphi A} \, R(\varphi) \quad \text{with} \quad R(\varphi) = e^{i\varphi \hat{A}}$$

• Gauge-space rotations generate the abelian Lie group U(I)

 $U(1)=\{R(\varphi):\varphi\in[\,0,2\pi]\}$

• Collectivity: rotation operator mitigates a non-perturbative transformation

 $|\Phi(\varphi)\rangle = R(\varphi)|\Phi\rangle$

rotated state is not a low-rank particle-hole excitation of $|\Phi\rangle$

• Similar expressions hold for other symmetries, e.g., rotational invariance SU(2)

Lacroix, Gambacurta, PRC (2012)

• Partitioning of full Hamiltonian into unperturbed part and perturbation

 $H = H_0 + H_1$

• Partitioning of full Hamiltonian into unperturbed part and perturbation

$$H = H_0 + H_1$$

• Textbook formulation: Hartree-Fock Slater determinant as reference state

$$E^{(2)} = -\frac{1}{2} \sum_{ai} \frac{g^2}{\epsilon_i - \epsilon_a}$$

i: holes (occupied) *a*: particles (unoccupied)

Partitioning of full Hamiltonian into unperturbed part and perturbation

$$H = H_0 + H_1$$

Textbook formulation: Hartree-Fock Slater determinant as reference state

$$\Xi^{(2)} = -\frac{1}{2} \sum_{ai} \frac{g^2}{\epsilon_i - \epsilon_a}$$

i: holes (occupied) a: particles (unoccupied)

Quasiparticle formulation: MBPT expansion around symmetry-broken BCS vacuum

 $E^{(2)} = -\frac{1}{2} \sum_{pq} g^2 \frac{\left(u_p^2 v_q^2 + u_q^2 v_p^2\right)^2}{E_p + E_q} \qquad E_p > 0: \text{ quasi-particle energies}$

• Partitioning of full Hamiltonian into unperturbed part and perturbation

$$H = H_0 + H_1$$

• Textbook formulation: Hartree-Fock Slater determinant as reference state

$$\Xi^{(2)} = -\frac{1}{2} \sum_{ai} \frac{g^2}{\epsilon_i - \epsilon_a}$$

i: holes (occupied) *a*: particles (unoccupied)

Quasiparticle formulation: MBPT expansion around symmetry-broken BCS vacuum

$$E^{(2)} = -\frac{1}{2} \sum_{pq} g^2 \frac{\left(u_p^2 v_q^2 + u_q^2 v_p^2\right)^2}{E_p + E_q} \qquad E_p > 0: \text{ quasi-particle energies}$$

• **Projected MBPT:** expectation-value formulation with particle-number projector

$$E = \frac{\langle \Psi | P_A^{\dagger} H P_A | \Psi \rangle}{\langle \Psi | P_A | \Psi \rangle} \qquad \qquad |\Psi\rangle = |\Phi_{BCS}\rangle + |\Psi^{(1)}\rangle$$

• Partitioning of full Hamiltonian into unperturbed part and perturbation

$$H = H_0 + H_1$$

• Textbook formulation: Hartree-Fock Slater determinant as reference state

$$\Xi^{(2)} = -\frac{1}{2} \sum_{ai} \frac{g^2}{\epsilon_i - \epsilon_a}$$

i: holes (occupied) *a*: particles (unoccupied)

Quasiparticle formulation: MBPT expansion around symmetry-broken BCS vacuum

$$E^{(2)} = -\frac{1}{2} \sum_{pq} g^2 \frac{\left(u_p^2 v_q^2 + u_q^2 v_p^2\right)^2}{E_p + E_q} \qquad E_p > 0: \text{ quasi-particle energies}$$

• **Projected MBPT:** expectation-value formulation with particle-number projector

$$E = \frac{\langle \Psi | P_A^{\dagger} H P_A | \Psi \rangle}{\langle \Psi | P_A | \Psi \rangle} \qquad \qquad |\Psi\rangle = |\Phi_{BCS}\rangle + |\Psi^{(1)}\rangle$$

• Standard HF-MBPT is recovered in limiting case of vanishing pairing gap

Results of perturbation theory

Henderson et al., PRC (2014)

• Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states

$$|\Psi_{\rm BCC}\rangle = e^{T}|\Phi_{\rm BCS}\rangle$$

Henderson et al., PRC (2014)

• Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states

$$|\Psi_{\rm BCC}\rangle = e^{T}|\Phi_{\rm BCS}\rangle$$

• Many-body operators are transformed to quasiparticle basis using *u*/*v* coefficients

$$\beta_{\rho}^{\dagger} = u_{\rho}c_{\rho}^{\dagger} + v_{\rho}c_{\bar{\rho}} \qquad \qquad \beta_{\bar{\rho}}^{\dagger} = u_{\rho}c_{\bar{\rho}}^{\dagger} - v_{\rho}c_{\rho}$$

Henderson et al., PRC (2014)

• Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states

$$|\Psi_{\rm BCC}\rangle = e^{T}|\Phi_{\rm BCS}\rangle$$

• Many-body operators are transformed to quasiparticle basis using u/v coefficients

$$\beta_{\rho}^{\dagger} = u_{\rho}c_{\rho}^{\dagger} + v_{\rho}c_{\bar{\rho}} \qquad \qquad \beta_{\bar{\rho}}^{\dagger} = u_{\rho}c_{\bar{\rho}}^{\dagger} - v_{\rho}c_{\rho}$$

• Cluster operator is expressed in SU(2) algebra (but now with quasiparticles!)

$$T_2 = \frac{1}{2} \sum_{pq} t_{pq} \mathcal{P}_p^{\dagger} \mathcal{P}_q^{\dagger} \qquad \qquad \mathcal{P}_p^{\dagger} = \beta_p^{\dagger} \beta_{\bar{p}}^{\dagger}$$

Henderson et al., PRC (2014)

• Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states

$$|\Psi_{\rm BCC}\rangle = e^T |\Phi_{\rm BCS}\rangle$$

• Many-body operators are transformed to quasiparticle basis using u/v coefficients

$$\beta_{\rho}^{\dagger} = u_{\rho}c_{\rho}^{\dagger} + v_{\rho}c_{\bar{\rho}} \qquad \qquad \beta_{\bar{\rho}}^{\dagger} = u_{\rho}c_{\bar{\rho}}^{\dagger} - v_{\rho}c_{\rho}$$

• Cluster operator is expressed in SU(2) algebra (but now with quasiparticles!)

$$T_2 = \frac{1}{2} \sum_{pq} t_{pq} \mathcal{P}_p^{\dagger} \mathcal{P}_q^{\dagger} \qquad \qquad \mathcal{P}_p^{\dagger} = \beta_p^{\dagger} \beta_{\bar{p}}^{\dagger}$$

• Evaluate amplitude equations using Wick theorem for SU(2) algebra

$$0 = \langle \Phi_{\text{BCS}} | \mathcal{P}_p \mathcal{P}_q e^{-T} (H - \lambda A) e^T | \Phi_{\text{BCS}} \rangle \quad \forall p, q$$

Henderson et al., PRC (2014)

• Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states

$$|\Psi_{\rm BCC}\rangle = e^T |\Phi_{\rm BCS}\rangle$$

• Many-body operators are transformed to quasiparticle basis using u/v coefficients

$$\beta_{\rho}^{\dagger} = u_{\rho}c_{\rho}^{\dagger} + v_{\rho}c_{\bar{\rho}} \qquad \qquad \beta_{\bar{\rho}}^{\dagger} = u_{\rho}c_{\bar{\rho}}^{\dagger} - v_{\rho}c_{\rho}$$

• Cluster operator is expressed in SU(2) algebra (but now with quasiparticles!)

$$T_2 = \frac{1}{2} \sum_{pq} t_{pq} \mathcal{P}_p^{\dagger} \mathcal{P}_q^{\dagger} \qquad \qquad \mathcal{P}_p^{\dagger} = \beta_p^{\dagger} \beta_{\bar{p}}^{\dagger}$$

• Evaluate amplitude equations using Wick theorem for SU(2) algebra

$$0 = \langle \Phi_{\text{BCS}} | \mathcal{P}_p \mathcal{P}_q e^{-T} (H - \lambda A) e^T | \Phi_{\text{BCS}} \rangle \quad \forall p, q$$

Extends single-reference coupled-cluster theory to superfluid regime

Henderson et al., PRC (2014)

Extends single-reference coupled-cluster theory to superfluid regime

• Near the critical coupling both dynamic and static correlations are important

- Near the critical coupling both dynamic and static correlations are important
- Definition of particle-number-projected coupled-cluster (PCC) wave function

$$\Psi_{\rm PBCC}\rangle = P_A |\Psi_{\rm BCC}\rangle = P_A e^T |\Phi_{\rm BCS}\rangle$$

- Near the critical coupling both dynamic and static correlations are important
- Definition of particle-number-projected coupled-cluster (PCC) wave function

$$|\Psi_{PBCC}\rangle = P_A |\Psi_{BCC}\rangle = P_A e^T |\Phi_{BCS}\rangle$$

• Projected coupled-cluster energy in presence of projection operator

$$E_{PCC} = \frac{\langle \Phi_{BCS} | P_A H e^T | \Phi_{BCS} \rangle}{\langle \Phi_{BCS} | P_A e^T | \Phi_{BCS} \rangle}$$

Qiu et al., PRC (2019) Duguet, JPG (2014)

- Near the critical coupling both dynamic and static correlations are important
- Definition of particle-number-projected coupled-cluster (PCC) wave function

$$|\Psi_{PBCC}\rangle = P_A |\Psi_{BCC}\rangle = P_A e^T |\Phi_{BCS}\rangle$$

• Projected coupled-cluster energy in presence of projection operator

• Challenge: evaluation of operator kernels in presence of cluster operator

 $H(\varphi) = \langle \Phi(\varphi) | H e^T | \Phi \rangle$

- Near the critical coupling both dynamic and static correlations are important
- Definition of particle-number-projected coupled-cluster (PCC) wave function

$$|\Psi_{PBCC}\rangle = P_A |\Psi_{BCC}\rangle = P_A e^T |\Phi_{BCS}\rangle$$

• Projected coupled-cluster energy in presence of projection operator

• Challenge: evaluation of operator kernels in presence of cluster operator

$$H(\varphi) = \langle \Phi(\varphi) | H e^T | \Phi \rangle$$

• Symmetry projection beyond mean-field constitutes a highly non-trivial task

- Near the critical coupling both dynamic and static correlations are important
- Definition of particle-number-projected coupled-cluster (PCC) wave function

$$|\Psi_{PBCC}\rangle = P_A |\Psi_{BCC}\rangle = P_A e^T |\Phi_{BCS}\rangle$$

• Projected coupled-cluster energy in presence of projection operator

Challenge: evaluation of operator kernels in presence of cluster operator

$$H(\varphi) = \langle \Phi(\varphi) | H e^T | \Phi \rangle$$

- Symmetry projection beyond mean-field constitutes a highly non-trivial task
- Numerical implementation is computationally very demanding in practice

Large-scale ab initio applications

Particle-number-broken many-body frameworks for open-shell nuclei

No full projection yet!

• Question: can we emulate the many-body solution based on training data?

• Question: can we emulate the many-body solution based on training data?

training data	training vectors		target	coupling
$\{g_1,, g_N\}$	$\{ \Psi(g_1)\rangle, \dots, \Psi(g_N)\}$	>	g_{\odot}	 Ψ(g_☉) ⟩

• Eigenvector continuation: systematic framework for emulation of observables

• Question: can we emulate the many-body solution based on training data?

training data	training vectors		target coupling		
$\{g_1,\ldots,g_N\}$	$\{ \Psi(g_1)\rangle, \dots, \Psi(g_N)\}$	\longrightarrow	g_{\odot}	$ \Psi(g_{\odot})\rangle$	

- Eigenvector continuation: systematic framework for emulation of observables
- Generalized eigenvalue problem in the basis of (non-orthogonal) training vectors

 $H\vec{x} = \epsilon N\vec{x}$

• Question: can we emulate the many-body solution based on training data?

$$\{g_1, \dots, g_N\} \qquad \{|\Psi(g_1)\rangle, \dots, |\Psi(g_N)\} \longrightarrow g_0 \quad |\Psi(g_0)\rangle$$

training data training vectors target coupling

- Eigenvector continuation: systematic framework for emulation of observables
- Generalized eigenvalue problem in the basis of (non-orthogonal) training vectors

 $H\vec{x} = \epsilon N\vec{x}$

• Numerical challenge mainly driven by evaluation of operator and norm kernels

 $H_{pq} = \langle \Psi(g_p) | H(g_{\odot}) | \Psi(g_q) \rangle$ $N_{pq} = \langle \Psi(g_p) | \Psi(g_q) \rangle$

• Question: can we emulate the many-body solution based on training data?

$$\{g_1, \dots, g_N\} \qquad \{|\Psi(g_1)\rangle, \dots, |\Psi(g_N)\} \longrightarrow g_0 \quad |\Psi(g_0)\rangle$$

training data training vectors target coupling

- Eigenvector continuation: systematic framework for emulation of observables
- Generalized eigenvalue problem in the basis of (non-orthogonal) training vectors

 $H\vec{x} = \epsilon N\vec{x}$

• Numerical challenge mainly driven by evaluation of operator and norm kernels

 $H_{pq} = \langle \Psi(g_p) | H(g_{\odot}) | \Psi(g_q) \rangle$ $N_{pq} = \langle \Psi(g_p) | \Psi(g_q) \rangle$

Hot topic: emerging field in nuclear physics with numerous applications

Duguet et al., arXiv:2310.19419 (2023)

Performance of the EC emulator

Companys Franzke, Tichai, Hebeler, Schwenk, PRC (2024)

- Introduction of different training manifolds: normal, superfluid, mixed
- One-sided training manifolds are unreliable for non-trained regime
- Mixed training manifold yields consistent prediction for all couplings

Selection of appropriate training vectors crucial!

similar study using DMRG:

Baran, Nichita, PRB (2023)

Performance of the EC emulator

Conclusions

Pairing Hamiltonian as many-body testbed

- Integrable Richardson solution for arbitrary system size
- Emergence of critical coupling separating normal and superfluid phase
- Breakdown of conventional many-body expansions

Lesson: Hartree-Fock-based schemes are doomed to fail

Implications on many-body frameworks

- Capture static correlations via spontaneous symmetry breaking
- Account for dynamic correlations using many-body expansion
- Parametric dependence can be efficiently emulated

Lesson: reference state must capture important static correlations

Conclusions

Pairing Hamiltonian as many-body testbed

- Integrable Richardson solution for arbitrary system size
- Emergence of critical coupling separating normal and superfluid phase
- Breakdown of conventional many-body expansions

Lesson: Hartree

Take-home message: Schematic models reveal key correlations relevant for realistic applications.

Implications on ma

- Capture static correlations via spontaneous symmetry breaking
- Account for dynamic correlations using many-body expansion
- Parametric dependence can be efficiently emulated

Lesson: reference state must capture important static correlations