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Nuclear superfluidity

Hmodel

The pairing Hamiltonian schematic models
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Nuclear phenomenology

Nuclear masses of tin isotopes (AME2020)
* Odd-even staggering of experimental 8.1
binding energies along isotopic chains - AQp (z=50)

—8.2 | -

* Three-point mass differences give
estimate for the (neutron) pairing gap

EO /A [MGV]

(—1)"

; N
A/(v ) = (EN+1 — 2En + EN—1) H :

* Experimental evidence of formation of
Cooper pairs in atomic nuclei

1|
'N=50

N=82 ]
3 _'T — shell closures \ ]

2 -

short-range attractive =
two-body interaction =
<

* Nuclear phenomenology emerges from p
interplay of pairing and deformation - :

100 110 120 130 140
— see also talk by D. Lacroix
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The Pairing Hamiltonian

* One-parameter interaction describing superfluidity Number of levels Q=38

Occupied levels NOCC =4

—0—0—

A t t t -t
Hpairing Z €p (cloc}D + cpcﬁ) + g Z €,C5C5C,
p Pq
* Generation of a pair of time-reversed states

Ip) = nplpjpmp) — |P) =|nplpjp — Mp) _
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The Pairing Hamiltonian
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Occupied levels NOCC =4
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A t t t -t
Hpairing = Z €p (cloc}D + cpcﬁ) + g Z €,C5C5C,
p Pq
* Generation of a pair of time-reversed states

Ip) = nplpjpmp) — |P) =|nplpjp — Mp) _

* Pair operators form a SU(2) quasispin algebra
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The Pairing Hamiltonian

* One-parameter interaction describing superfluidity Number of levels Q=38

Occupied levels NOCC =4

—0—0—

Hpairing=Zep(c +c C. )+chTc C5C,
p

* Generation of a pair of time-reversed states

Ip) = nplpjpmp) — |P) =|nplpjp — Mp) _

* Pair operators form a SU(2) quasispin algebra

Np=clcp+ chcp Pl =clc J

* Representation in quasispin algebra e, —@—@—

* Admits for a transition to superfluid regime at
critical coupling strength
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The pairing Hamiltonian

Overlap between eigenstates at different coupling strengths
1.0

0.8

0.6

- 0.4

- 0.2

0.0

—2 -1 0 Jcrit 1 2

Companys Franzke, Tichai, Hebeler, Schwenk, PRC (2024)
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Richardson solution

e Richardson solution: exact wave function is written from pair creation operators
Richardson, PL (1965), PR (1966)

T _— T
W) =8t -....BL|0) B! = P
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Richardson solution

e Richardson solution: exact wave function is written from pair creation operators
Richardson, PL (1965), PR (1966)

T _— T
W) =8t -....BL|0) B! = P

* Solving coupled system of equations provides unknown pair energies Eq

1
—9 29 Va=1,...,Q
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Richardson solution

e Richardson solution: exact wave function is written from pair creation operators
Richardson, PL (1965), PR (1966)

T _— T
W) =8t -....BL|0) B! = P

* Solving coupled system of equations provides unknown pair energies Eq

1 1
—3g 29 Va=1,...,Q

* Final ground-state energy obtained from sum of pair energies
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Egs= Y Eq
a=1
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Richardson solution

e Richardson solution: exact wave function is written from pair creation operators
Richardson, PL (1965), PR (1966)
<2 1

= T- . T BT= PT
W) =Bt -...-BL|0) L ;26,0—5, !

* Solving coupled system of equations provides unknown pair energies Eq

1 1
—3g 29 Va=1,...,Q

* Final ground-state energy obtained from sum of pair energies

Q
Egs= Y Eq
a=1

* Modifications are required in case of unpaired particles (non-zero seniority)
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Richardson solution

e Richardson solution: exact wave function is written from pair creation operators
Richardson, PL (1965), PR (1966)
<2 1

= T- . T BT= PT
W) =Bt -...-BL|0) L ;26,0—5, !

* Solving coupled system of equations provides unknown pair energies Eq

1 1
—3g 29 Va=1,...,Q

* Final ground-state energy obtained from sum of pair energies

Q
Egs= Y Eq
a=1

* Modifications are required in case of unpaired particles (non-zero seniority)

* Extend full configuration interaction (FCI) capacities: limited to ~20 levels
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Many-body correlations

dynamic correlations
(expansion on top of dominant Slater determinant)

Hartree-Fock

>

static correlations
(collectivity through symmetry projection)
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Many-body correlations

dynamic correlations
(expansion on top of dominant Slater determinant)
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Many-body correlations

dynamic correlations
(expansion on top of dominant Slater determinant)

Exact solution
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@ ccsp + x
@ ccsp
@ w™MBPT3
@ wmMBPT2

Hartree-Fock sym.-brc.:ken Sym.-resFored
mean field mean field

>

static correlations
(collectivity through symmetry projection)
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Many-body correlations

dynamic correlations
(expansion on top of dominant Slater determinant)

Exact solution

®
@ ccsp + x
@ ccsp
Hybrid schemes
‘Best of both worlds’
@ w™MBPT3
@ wmMBPT2

Hartree-Fock sym.-brc.:ken SYm-"'eSFOI"Ed
mean field mean field

>

static correlations
(collectivity through symmetry projection)
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Particle-number-broken mean field

* BCS wave-function ansatz for superfluid system
(Bardeen-Cooper-Schrieffer)

|®8cs) = ll(up +vpclc)0)
p>
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Particle-number-broken mean field

* BCS wave-function ansatz for superfluid system
(Bardeen-Cooper-Schrieffer)

T
|®8cs) = ll(up +vpclc)0)
p>

* BCS state breaks particle-number conservation

Al®gcs) # Aol®scs)

e Constrained minimization subject to: trp =A

H — H-=—AA
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Particle-number-broken mean field

* BCS wave-function ansatz for superfluid system
(Bardeen-Cooper-Schrieffer)

|®8cs) = ll(up +vpclc)0)
p>

* BCS state breaks particle-number conservation

Al®gcs) # Aol®scs)

e Constrained minimization subject to: trp =A
H — H-—MA

* Solution obtained from solving BCS equations

V=I(1- 2 )

SR

.y 2
Ep = €Ep—A gv}O
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* BCS state breaks particle-number conservation
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e Constrained minimization subject to: trp =A
H — H-—MA

* Solution obtained from solving BCS equations

V=I(1- 2 )

SR
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Ep = €Ep—A gv}O

* HF theory recovered in the limit of vanishing gap
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Particle-number-broken mean field

* BCS wave-function ansatz for superfluid system
(Bardeen-Cooper-Schrieffer)

|PBcs) = l_[ (up + vp C;gc;g) |0) BCS occupation profile
p>0 V2

* BCS state breaks particle-number conservation

Al®gcs) # Aol®scs) A=

e Constrained minimization subject to: trp =A

H — H-—MA A+0
* Solution obtained from solving BCS equations A A €p
1 g
2 P
vi=—|1—
p 2( \/52 n Az) A= (¢BCS|C;CE|¢BCS) =g ), UpVp
p p>0
Ep =€p— A—Q VS BCS gap parameter

* HF theory recovered in the limit of vanishing gap
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Particle-number-broken mean field

e —

S

S

S

S

i

BCS solution for normal and superfluid regime

R

R R I I I v__?:J

H 10  — Richardson
g
l [ —— BCS \
5 ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ]
—1.0 —0.5 0.0 0.5 1.0
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Symmetry projection

* Any broken symmetry must be eventually restored in a finite quantum system
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Symmetry projection

* Any broken symmetry must be eventually restored in a finite quantum system

e Application of particle-number projector restores the broken symmetry

1 2T

P4 dpe~®AR(p) with R(¢)= e

=2—T[O
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Symmetry projection

* Any broken symmetry must be eventually restored in a finite quantum system

e Application of particle-number projector restores the broken symmetry

1 2T

PA dpe~9AR(p) with R(p)= e’

=2—T[O

* Gauge-space rotations generate the abelian Lie group U(I)

U(l)={R(¢) : 9 €[0,2m]}
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Symmetry projection

* Any broken symmetry must be eventually restored in a finite quantum system

e Application of particle-number projector restores the broken symmetry

1 2T

Pa dpe 9AR(p) with R(g)=e®A

=2—T[0

* Gauge-space rotations generate the abelian Lie group U(I)
U(1) ={R(¢) : ¢ €[0, 2m]}

o Collectivity: rotation operator mitigates a non-perturbative transformation

|2(¢)) = R(@)|®)

rotated state is not a low-rank
particle-hole excitation of |®)
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Symmetry projection

* Any broken symmetry must be eventually restored in a finite quantum system

e Application of particle-number projector restores the broken symmetry

1 2T

Pa dpe 9AR(p) with R(p)= e

=2—T[0

* Gauge-space rotations generate the abelian Lie group U(I)
U(1) ={R(¢) : ¢ €[0, 2m]}

o Collectivity: rotation operator mitigates a non-perturbative transformation

|2(¢)) = R(@)|®)

rotated state is not a low-rank
particle-hole excitation of |®)

* Similar expressions hold for other symmetries, e.g., rotational invariance SU(2)
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Perturbation theory

Lacroix, Gambacurta, PRC (2012)

e Partitioning of full Hamiltonian into unperturbed part and perturbation

H=Ho+ H;

A. Tichai | Model Systems in Quantum Mechanics 2024 Il



Perturbation theory

Lacroix, Gambacurta, PRC (2012)

e Partitioning of full Hamiltonian into unperturbed part and perturbation
H=Ho+ H;

e Textbook formulation: Hartree-Fock Slater determinant as reference state

1 Z g2 i holes (occupied)

g(2) — __ . .
a: particles (unoccupied)
2 - €Ei—€aq
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Perturbation theory

Lacroix, Gambacurta, PRC (2012)

e Partitioning of full Hamiltonian into unperturbed part and perturbation
H=Ho+ H;

e Textbook formulation: Hartree-Fock Slater determinant as reference state

1 Z g2 i holes (occupied)

g(2) — __ . .
a: particles (unoccupied)
2 - €Ei—€aq

* Quasiparticle formulation: MBPT expansion around symmetry-broken BCS vacuum

2

1 (uzv2 + uzvz)

E2) — __ Z 92 b 9 q P E, > 0: quasi-particle energies
2 Ep+ Eq

Pq
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Perturbation theory

Lacroix, Gambacurta, PRC (2012)

e Partitioning of full Hamiltonian into unperturbed part and perturbation
H=Ho+ H;
e Textbook formulation: Hartree-Fock Slater determinant as reference state

1 Z g2 i holes (occupied)

g(2) — __ . .
a: particles (unoccupied)
2 - €Ei—€aq

* Quasiparticle formulation: MBPT expansion around symmetry-broken BCS vacuum

2
1 (uzv2 + uzvz)
E2) — __ Z 92 b 9 q P E, > 0: quasi-particle energies
2 0 Ep+ Eq

* Projected MBPT: expectation-value formulation with particle-number projector

WPt HP AW
E=( IPaHPAIY) W) = |®pcs) + [V

(W[PalW)

A.Tichai | Model Systems in Quantum Mechanics 2024 |



Perturbation theory

Lacroix, Gambacurta, PRC (2012)

e Partitioning of full Hamiltonian into unperturbed part and perturbation
H=Ho+ H;

e Textbook formulation: Hartree-Fock Slater determinant as reference state

1 Z g2 i holes (occupied)

g(2) — __ . .
a: particles (unoccupied)
2 - €Ei—€aq

* Quasiparticle formulation: MBPT expansion around symmetry-broken BCS vacuum
2
21,2 4 11212
1 z(u Ve + usv )

E2) — __ Z g b 9 q P E, > 0: quasi-particle energies
2 0 Ep+ Eq

* Projected MBPT: expectation-value formulation with particle-number projector

WPt HP AW
E=( IPaHPAIY) W) = |®pcs) + [V

(W[PalW)

e Standard HF-MBPT is recovered in limiting case of vanishing pairing gap
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Results of perturbation theory

Lacroix, Gambacurta, PRC (2012)

Correlation energy as a function of coupling strength

4.0 : . : : . ,
I superfluid regime
3.5
- N=12, Q=12 :
3.0 [ -
| @ Projected MBPT |
2.9 | == Richardson ’ /"'

FE/Ae

0.0 0.15 0.3 0.45 0.6
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Coupled-cluster theory for BCS states

Henderson et al., PRC (2014)

* Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states

|Wece) = e’ |®pes)
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Coupled-cluster theory for BCS states

Henderson et al., PRC (2014)

* Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states
Wece) = e |®aes)

* Many-body operators are transformed to quasiparticle basis using u/v coefficients

T _ t _ t_ t
,8p = “PCp + VpCp ﬁﬁ = UpCps— VpCp
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Coupled-cluster theory for BCS states

Henderson et al., PRC (2014)

* Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states
Wece) = e |®aes)

* Many-body operators are transformed to quasiparticle basis using u/v coefficients

T _ t _ t_ t
,8p = “PCp + VpCp ﬁp = UpCps— VpCp

e Cluster operator is expressed in SU(2) algebra (but now with quasiparticles!)

1
pq
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Coupled-cluster theory for BCS states

Henderson et al., PRC (2014)

* Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states
Wece) = e |®aes)

* Many-body operators are transformed to quasiparticle basis using u/v coefficients

T _ t _ t_ t
,8p = “PCp + VpCp ﬁp = UpCps— VpCp

e Cluster operator is expressed in SU(2) algebra (but now with quasiparticles!)
1
— _ Tpt T — ptpt
T2 =3 ;tpqpppq Po = PBpPp

* Evaluate amplitude equations using Wick theorem for SU(2) algebra

0 = (®pcs|PpPge " (H—AA)eT|®pcs) VP, g
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Coupled-cluster theory for BCS states

Henderson et al., PRC (2014)

* Bogoliubov coupled-cluster (BCC) theory: CC extension for BCS reference states
Wece) = e |®aes)

* Many-body operators are transformed to quasiparticle basis using u/v coefficients

T _ t _ t_ t
,8p = “PCp + VpCp ﬁp = UpCps— VpCp

e Cluster operator is expressed in SU(2) algebra (but now with quasiparticles!)
1
— _ Tpt T — ptpt
T2 =3 ;tpqpppq Po = PBpPp

* Evaluate amplitude equations using Wick theorem for SU(2) algebra
0 = (®pcs|PpPge™ (H—AA)e'|®pcs) Vp, q

* Extends single-reference coupled-cluster theory to superfluid regime

A.Tichai | Model Systems in Quantum Mechanics 2024 13



Coupled-cluster theory for BCS states

BCC performance in superfluid phase !
1.1 ' | T | T | T T T T T

D o BCSp-CCD - H
1.05 | g = BCSPp-BCCD - |

. - I PBCS -
H © 1 :\'\ |I'| ..r!a‘-‘l":"!—"':!::!::jl H

2. 095 3 - .
ol - R L - '
~ 09 ¢ S e - |

Sa) i \'\ / i

085+  G. W [ -

08 B \ \‘\‘/./‘ 7
H 0.75 1 ] 1 ] 1 ] 1 ] 1 ] 1 H
. 0 0.1 02 03 04 05 0.6 H
G/ Ae '

Henderson et al., PRC (2014)
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Projected coupled-cluster theory

* Near the critical coupling both dynamic and static correlations are important
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Projected coupled-cluster theory

* Near the critical coupling both dynamic and static correlations are important

* Definition of particle-number-projected coupled-cluster (PCC) wave function

|Wpcc) = PalWscc) = Pae’ |®acs)
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Projected coupled-cluster theory

* Near the critical coupling both dynamic and static correlations are important

* Definition of particle-number-projected coupled-cluster (PCC) wave function

Wpecc) = Pal¥scc) = Pae’|®acs)
* Projected coupled-cluster energy in presence of projection operator

(Bcs|PaH e’ |®ges) Qiu et al., PRC (2019)
(®pcs|Pae’ |®pcs) Duguet, JPG (2014)

Epcc =
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Projected coupled-cluster theory

* Near the critical coupling both dynamic and static correlations are important

* Definition of particle-number-projected coupled-cluster (PCC) wave function

Wpecc) = Pal¥scc) = Pae’|®acs)
* Projected coupled-cluster energy in presence of projection operator

(Bcs|PaH e’ |®ges) Qiu et al., PRC (2019)
(®pcs|Pae’ |®pcs) Duguet, JPG (2014)

Epcc =

e Challenge: evaluation of operator kernels in presence of cluster operator

H(p) = (®(p)|He'|®)

A.Tichai | Model Systems in Quantum Mechanics 2024 15



Projected coupled-cluster theory

* Near the critical coupling both dynamic and static correlations are important

* Definition of particle-number-projected coupled-cluster (PCC) wave function

Wpecc) = Pal¥scc) = Pae’|®acs)
* Projected coupled-cluster energy in presence of projection operator

(CI)BCSlPA H equ)BCS) Qiu et al., PRC (2019)
(®pcs|Pa e’ |®pcs) Duguet, JPG (2014)

Epcc =

e Challenge: evaluation of operator kernels in presence of cluster operator
H(p) = (®(p)IHe'|2)

* Symmetry projection beyond mean-field constitutes a highly non-trivial task
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Projected coupled-cluster theory

* Near the critical coupling both dynamic and static correlations are important

* Definition of particle-number-projected coupled-cluster (PCC) wave function

Wpecc) = Pal¥scc) = Pae’|®acs)
* Projected coupled-cluster energy in presence of projection operator

(CI)BCSlPA H equ)BCS) Qiu et al., PRC (2019)
(®pcs|Pa e’ |®pcs) Duguet, JPG (2014)

Epcc =

e Challenge: evaluation of operator kernels in presence of cluster operator
H(p) = (®(p)IHe'|2)

* Symmetry projection beyond mean-field constitutes a highly non-trivial task
* Numerical implementation is computationally very demanding in practice
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Projected coupled-cluster theory

PBCC performance in superfluid phase

dynamic + static

-
——_—
-

.
©
Ul

C

exact
O
O
o

e

W \ /
= 0.85 N /  — HF-CCSD
./ o PBCS-CCSD
0.80 - N/ — BCS-CCSD
i -- PBCS
0.75- static

0.70 ! I T T T
0.5 1.0 1.5 2.0 2.5 3.0

G/G.

Qiu et al., PRC (2019)

S e e e R

e ———
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Projected coupled-cluster theory

PBCC performance in superfluid phase

1.05
é dynamic + static
1.00 - ACRCACACACECACE-RCas o

-—
—
-

-

0.9

Rationale:
Combine symmetry projection with non-

exact

QL

/ |
-

L 0 perturbative correlation expansion!
L 0.
\ m
0.80 - N BCS-CCSD
N -- PBCS
0.75 - static
0.70

05 1.0 15 20 25 3.0
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Qiu et al., PRC (2019)
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Large-scale ab initio applications

Particle-number-broken many-body frameworks for open-shell nuclei

—400 LI L L L L L L L L L L Y L L O

| EM 1.8/2.0 © HEB _

I ¢ BMBPT(2) |

—600 [e # BCCSD -

- ... _ EXp -
> ! ...“o J 7%
B o0
Y —800 g ...'00000000000000000“’°'..- o
= : 115
- _ i c
S ASn ] |3
~1000 |- 1 |3
= - L 9
i # -39

e 1 $EBEEBBSSSFHEEBIBEIET

—llllllllIllllllllllllllllllllllllllllllll-

100 110 120 130 140 150 160 170 180
A

Tichai, Demol, Duguet, arXiv:2307.15619 (2023)

No full projection yet!
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Many-body emulators

* Question: can we emulate the many-body solution based on training data?

{91,.....an} {I¥(g1)), ..., |¥(gn)} > do  |W(g0e))

training data training vectors target coupling
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* Eigenvector continuation: systematic framework for emulation of observables

A. Tichai | Model Systems in Quantum Mechanics 2024 18



Many-body emulators

* Question: can we emulate the many-body solution based on training data?

{91,.....an} {I¥(g1)), ..., |¥(gn)} > do  |W(g0e))

training data training vectors target coupling

* Eigenvector continuation: systematic framework for emulation of observables

* Generalized eigenvalue problem in the basis of (non-orthogonal) training vectors
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Many-body emulators

* Question: can we emulate the many-body solution based on training data?

{91,.....an} {I¥(g1)), ..., |¥(gn)} > do  |W(g0e))

training data training vectors target coupling

* Eigenvector continuation: systematic framework for emulation of observables

* Generalized eigenvalue problem in the basis of (non-orthogonal) training vectors
HX =€eNX
* Numerical challenge mainly driven by evaluation of operator and norm kernels

Hpq = (W(9p)IH(90)I¥(9q))
Npg = (Y(9p)I¥(94q))
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Many-body emulators

* Question: can we emulate the many-body solution based on training data?

{91,.....an} {I¥(g1)), ..., |¥(gn)} > do  |W(g0e))

training data training vectors target coupling

* Eigenvector continuation: systematic framework for emulation of observables

* Generalized eigenvalue problem in the basis of (non-orthogonal) training vectors
HX =€eNX
* Numerical challenge mainly driven by evaluation of operator and norm kernels

Hpq = (W(9p)IH(90)I¥(9q))
Npg = (Y(9p)I¥(94q))

* Hot topic: emerging field in nuclear physics with numerous applications

Duguet et al., arXiv:2310.19419 (2023)
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Performance of the EC emulator

EC emulator using different training sets
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similar study using DMRG:
Baran, Nichita, PRB (2023)
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Companys Franzke, Tichai, Hebeler, Schwenk, PRC (2024)
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Performance of the EC emulator

EC emulator using different training sets
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D5l d training manifolds are
5] eact . L. : on-trained regime
* training poi What are applications in 5
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Pairing Hamiltonian as many-body testbed

* Integrable Richardson solution for arbitrary system size
* Emergence of critical coupling separating normal and superfluid phase
* Breakdown of conventional many-body expansions

Lesson: Hartree-Fock-based schemes are doomed to fail

Implications on many-body frameworks

e Capture static correlations via spontaneous symmetry breaking

* Account for dynamic correlations using many-body expansion

* Parametric dependence can be efficiently emulated

Lesson: reference state must capture important static correlations
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Pairing Hamiltonian as many-body testbed

* Integrable Richardson solution for arbitrary system size

* Emergence of critical coupling separating normal and superfluid phase

e Breakdown of conventional many-bodv expansions

Lesson: Hartre

Take-home message:
Schematic models reveal key correlations
relevant for realistic applications.

Implications on

e Capture static correlations via spontaneous symmetry breaking

* Account for dynamic correlations using many-body expansion

* Parametric dependence can be efficiently emulated

Lesson: reference state must capture important static correlations
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