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An introduction to

Dynamical Mean-Field Theory (DMFT)

0.40

535, U= 0.00eV

0.301

H

coupling 0.251

30.201
<
onsistent

,\/ffectwe bath

0.15

0.10

0.051

0.00

Cyril Martins

LCPQ, Université Toulouse Il — Paul Sabatier, Toulouse, France



A brief history about DMFT

The Dynamical Mean-Field Theory framework was established in the early 1990’s.

THE PIONNEER WORKS

1989:  W. Metzner & D. Vollhardt, Phys. Rev. Lett. 62, 324
1991 : V, Jani§, Z. Physik B - Condensed Matter 83, 227-235
1992 : V. Jani$ & D. Vollhardt, Int. J. Mod. Phys. B 6, 731

A. Georges & G. Kotliar, Phys. Rev. B 45, 6479

\ M. Jarrel, Phys. Rev. Lett. 69, 168 /
P

Since then, an increasing /

interest from the scientific /™

community (condensed matter //¢

physics, chemistry, applied i

mathematics) : /
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-e- Publications (total)

Number of publications per year with the keyword « Dynamical Mean-Field Theory »
according to the database Dimensions (app.dimensions.ai)



Why such a success ?

DMFT ALLOWS TO DESCRIBE THE DMFT CAN BE COUPLED TO DFT
METAL/MOTT INSULATING TRANSITION TO DESCRIBE « CORRELATED MATERIALS »
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Phase diagram for the half-filled Hubbard model
on the Bethe lattice, using a continuous time
Quantum Monte Carlo impurity solver
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DMFT in a nutshell

WHAT DMFT IS NOT

 DMFT is not atheory of the many-body ground state (contrary to the Density Matrix
Embedded Theory, DMET)

 DMFT is not Time Dependent-DFT (TD-DFT) : TD-DFT focuses on the time-
\_ dependent density n(r,t) ! )

DMFT is based on the Green function formalism

(with time-independent — and often translationnaly-invariant — Hamiltonian) :

G, t; 7', t") = —i(Wes|T[cr, )t @, t)][Wes)

G(k,t) = —i(Ws|T[c(t)ct (t = 0)]|Wgs)

In DMFT, the observable of interest is the local spectral function A(w)

(or the k-resolved spectral function A(k, w))

A(w) = ZA(k, w) = —%z Im[G(k, )]
k k



DMFT in a nutshell

WHAT DMFT IS

- DMFT is a mean-field theory for quantum many-body systems on a lattice.

- DMFT was initially designed to address the problem of fermions on a lattice,
especially the Hubbard model.

« Initial » problem Auxiliary problem Observable

Ising model Spins in an effective magnetic field hfgff Local magnetization
m; = (S;)
Electrons in a solid Non-interacting particles in an effective Local ground-state density
(Born-Oppenheimer local potential V, ;¢ (r) n(r)
approximation)
Hubbard model Atoms coupled to an effective bath : Local Green function
Impurity Anderson model G;(t) = —i(T[c,-(t)c;r (t = 0)])



THE SINGLE IMPURITY ANDERSON MODEL

Definition of the model

Impurity Green function, self-energy and hybridization
% The physics of the model

DYNAMICAL MEAN-FIELD THEORY EXPLAINED

The DMFT equations
The DMFT self-consistent loop in practice
The metal / Mott insulator transition in DMFT
\_ /
FROM MODELS TO MATERIALS : DMFT AND BEYOND
Describing correlated materials with DFT+DMFT
DFT+DMFT as a first step...
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Introduction

SCIENTIFIC

ADVISORY

PEDAGOGICAL CONTENT

DISCLAIMER

* | will introduce DMFT formalism on the simplest model ( the one-band Hubbard
model at half-filling) but DMFT can be applied to any fermionic lattice model
Hamiltonian at any filling.

* | will use the picture of 2D Hubbard model on a square lattice just to ease the
\ understanding.

J

USEFUL REVIEWS

« A. Georges, G. Kotliar, W; Krauth & M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)
«  “DMFT at 25 : Infinite Dimensions”, E. Pavarini, E. Koch, D. Vollhardt & A. Lichtenstein (2014)

«  “Dynamical Mean-Field Theory of Correlated Electrons”, E. Pavarini, E. Koch, D. Vollhardt & A.
\ Lichtenstein (2022)
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The single impurity Anderson model



Definition of the model

THE SINGLE IMPURITY ANDERSON MODEL

« Originally introduced by P.W. Anderson in 1961 to explain the formation of local
moments in magnetic alloys.

A “simplified” model with :

a localized, discrete quantum system, the impurity,
\ coupled to non-interacting states with a continuous spectrum, the bath. /

Hsiam = Hatom + Hpatn + Hcoupling

Z(SO—ﬂ) +U ﬁ

Hatom = (g0 — ) (ngr + ngy) + Unging,

80‘“4_ +

0 o

- T
Hpqen = z €k CroClko
k.o

Hcoupling = Z Vi Cli-o'dO' + Vl: dlcka
k.o

P. W. Anderson, Phys. Rev. 124, 41 (1961)



Impurity Green function, self-energy and hybridization

THE IMPURITY GREEN FUNCTION

« The impurity Green function G;,,(t,t") describes how “evolves” the electron on
the impurity site between time t and t' :

| Po(t)) = Gimp (£, 1) | Po(2) )

o /

Without any coupling to the bath and no
local interaction, G;,,(t,t") is a simple
phase shift :

e\

Gimp(t,t") = exp (—w (t— t’))

1
Gimn (W) = avecw =w+i0touiw
lmp( ) W+ U — & n

Hatom = €0(mar + nay) 10



Impurity Green function, self-energy and hybridization

THE IMPURITY GREEN FUNCTION

< Theimpurity Green function G;,,(t,t") describes how “evolves” the electron on
the impurity site between time t and t’ :

| Po(t)) = Gimp (£, 1) | Po(2) )

- The self-energy Z;,,(w) contains all the “local many-body physics”.

\_ /

_ Without any coupling to the bath but local
2(&-m) +U=0U 1/ interaction (atomic limit, with u = U/2) :

U 1 1 1 1 1
8 — —— G- = - -_— —
o=n=5 + imp (@) 2w+%+2w—g T
0 _—
Zimp(@) = Xg(w) =— avecw = w +i0" ouiw,
w

Hatom = €0(mar + ngy) + Unging, 11



Impurity Green function, self-energy and hybridization

THE IMPURITY GREEN FUNCTION

« Theimpurity Green function G;,,(t,t") describes how “evolves” the electron on
the impurity site between time t and t':

| Po(t)) = Gimp (£, 1) | Po(2) )

* The self-energy Z;,,,(w) contains all the “local many-body physics”.

* The hybridization A(w) encodes the possibility to “hop into the bath”,
propagate and come back” on the impurity site. /

Hatom + Hpatn + Hcoupling = (gp —wW(ngr + ngy) + Z €k C;acka + Z Vi C]l-ada + Vi dI'CkO'
k,o k,o

e\ F

With a coupling to a bath but no local
interaction (independent particle picture) :

1 Vi |?
imp (W) w+p—g5—A(w) (@) et 0 — E

avec w = w + 0" ou iw,
12



Impurity Green function, self-energy and hybridization

THE IMPURITY GREEN FUNCTION

« Theimpurity Green function G;,,(t,t") describes how “evolves” the electron on
the impurity site between time t and t':

1
w+p—e —A(w) = Zipmp(w)

Gimp (W) = avec w = w + 0% ou iw,

* The self-energy Z;,,(w) # Z,;.(w) contains all the “local many-body physics”.

* The hybridization A(w) encodes the possibility to “hop into the bath”,
propagate and come back” on the impurity site. /

2(gp—p) +U ﬁ Hgiam = Hatom + Hpaen + Hcoupling

Hutom = (g0 — ) (ngr + ngy) + Unging,

Eo—ll_f_ +

— t
0 — Hpaen = z €k CkoCio

k.o
_ T * 7T
Hcoupling - z Vk Ckada + Vk dacka
k,o 13



The physics of the model

\_

LOCAL SPECTRAL FUNCTION (ON THE IMPURITY SITE)

Two broad peaks in +U/2 : the hybridization A(w) induces a width of the initial
“Dirac” peak (at the atomic limit)

A sharp peak at w = 0 : Kondo resonance and Fermi liquid behavior of the
particles scattered by the singlet ground-state

This Kondo peak is a non-perturbative behavior of the model !

J

0ol T/Tx The singlet ground-state is formed by the
— 107 . . .
08| — w7 local moment on the impurity site and a
07} — 10 « cloud » of conduction band.
0.6} 10!
—  10?
505 — 10

= 04} ] +

Eo

06  -04  -02 0 0.2 0.4 0.6
w/U

J. Van Delft, The Physics of quantum impurity models
in « Dynamical Mean-Field Theory of Correlated Electrons » (2022)
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Dynamical Mean-Field Theory explained



The DMFT equations

THE ONE-BAND HUBBARD MODEL

* Originally introduced by J. Hubbard in 1964

H = Z(EO ‘Ll) (nLT + nll) - 2 (CL-I-O.C]O. + C Clo' z U ninyy

(i,j)o

& At half-filling, g = u=U/2 j

2(g0—w) +U

J. Hubbard, Proc Roy Soc Lond A, 276 (1964) 16



THE ONE-BAND HUBBARD MODEL

The Green function describes how an electron “propagates” from site i to site

o

j between atime t

Since the model is translationally-invariant, one rather consider the propagator :

The DMFT equations

6y(®) = =i (T [cx)cf (¢ = 0)])

1

G(k,w) =

w+u—¢&— 2k w)

I CAUTION !! The self-energy X;j(w) is non-local. /

where X' (k, w) is the self-energy

2(g0—w) +U

J. Hubbard, Proc Roy Soc Lond A, 276 (1964) 17



The DMFT equations

Within DMFT, the « original » one-band Hubbard model is mapped onto

an « auxiliary » single-impurity Anderson model.

L H

coupling

Ive bath \/

SELF-CONSISTENT RELATION

The local dynamics of the lattice
is the same of the impurity in the effective bath.

1

Gimp(W) = Gy (0) = zk: w+u—eg, — 2k )

18



The DMFT equations

DMFT APPROXIMATION

The local many-body effects are the same on each site of the lattice.
1

G. = .
W) = o e @) @) L)

= 5,,(®) et (@) =0 |

DY

coupling

tive bath \/ —_

SELF-CONSISTENT RELATION

The local dynamics of the lattice
is the same of the impurity in the effective bath.

1

Gimp(W) = Gy (0) = zk: w+u—eg, — 2k )

19



The DMFT equations

DMFT APPROXIMATION

The local many-body effects are the same on each site of the lattice.
1

G —
W) = o e @) @) L)

= 5,,(®) et (@) =0 |

DY

coupling

consistent
ective bath —

SELF-CONSISTENT RELATION

The local dynamics of the lattice
is the same of the impurity in the effective bath.

1

Gimp(w) = Gy (W) = Zk: W+ p— & — 2 (0)

20



o

The DMFT equations

THE DMFT EQUATIONS

I Yj(w) = Ey,,(w) et £(w) =0 I

N

coupling

H

onsistent

ctive bath v

Gimp(w) = Gii ((‘))

IN DYNAMICAL MEAN-FIELD THEORY

\_

The self-energy is local : only local quantum fluctuations are taken into account.

The self-energy is momentum-dependent : the full many-body dynamics of the
interacting system is described.




The DMFT equations

THE DMFT EQUATIONS

I Yj(w) = Ey,,(w) et £(w) =0 I

N

coupling

H

onsistent

ctive bath v

K Gimp(@) = Gy (W) /

LIMITS IN WHICH DMFT BECOMES EXACT

* In the non-interacting limit (U=0): X, (w) =0

imp
* In the atomic limit (t = 0) : Z;,,(w) = X, (w) et A(w) =0

atom

( In infinite coordination (when the connectivity z of the lattice tends to infinity) )
22




The DMFT self-consistent loop in practice

THE DMFT LOOP (FIRST ITERATION)

coupling
IMPURITY
SOLVER

Alw),U

onsistent
ctive bath

z:imp((‘)) /-\
A TN i,

G

\ imp(@) = W+ p—gy— A ( ) u(w) Z w+ U — g,

/

In practice, the DMFT loop is solved iteratively

until a criterion of convergence is reached (usually on G, (w)).

23



The DMFT self-consistent loop in practice

THE DMFT LOOP (FIRST ITERATION)

1
w+ [ — & —Z() (w) Zg.))(w)=

%oy (@) ] /-\
A N 0

G(k,w) =

coupling
IMPURITY
SOLVER

AV (w),U

onsistent
ctive bath

G

\ imp(W) = W+ p—gy— A ( ) u(w) Z w+ U — g, /

In practice, the DMFT loop is solved iteratively

until a criterion of convergence is reached (usually on G, (w)).

24



The DMFT self-consistent loop in practice

THE DMFT LOOP (ITERATION N)

1
(N+1)
W+ pU—&— 2 (w)

imp

G(k,w) =

(N+ 1)
lmp

(w )

* 1‘ Hcoupling
[ IMPURITY ]
SOLVER consistent

A(N+1) ((1)) , U

ective bath \/

1
Gimp (0) = =G, (w) = z
P AN+D) () — z M) (w) W+ U—¢&— El(m;

imp

W+ U—E —

o

(w) /

-

* An impurity solver is a method to solve the single-impurity Anderson model :
this is often the most time-consuming part of the loop.

Quatum Monte-Carlo, CT-QMC).

« It can be analytical (Iterated perturbation theory, IPT) or numerical (continuous time

s




The metal / Mott insulator in DMFT

Local spectral function for the half-filled Hubbard model on the Bethe lattice

(impurity solver : Iterated perturbation theory, IPT)
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The metal / Mott insulator in DMFT

Metallic state (U=0 eV)
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The metal / Mott insulator in DMFT

Metallic state (U=0 eV)
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From models to materials :
DMFT and beyond



Describing correlated materials with DFT+DMFT

Los Alamos National Laboratory Chemistry Division

Periodic Table of the Elements
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FOR CORRELATED MATERIALS

necessity to consider explicitly the Coulomb interaction between the electrons

Ne hQ
H = —o—V;i, + Vi

+Z 47rsg|rz—r |

1<

\ One body operator Two body operator




Describing correlated materials with DFT+DMFT

PRINCIPLES OF THE DFT+DMFT APPROACH

DFT part

—

Interfacing

Defining a « Hubbard-like » a
low-energy Hamiltonian

DMFT part

\

Projection part

operators on the

Constructing projection

relevant correlated orbitals

Wannier orbitals

obtained from the Bloch states

by a projection scheme.

(maximally localized Wannier functions)
\ N. Marzari et al, Rev. Mod. Phys. 84, 1419 (2012)

\

Estimation part

Evaluating the interaction
parameter
« Hubbard U »

U is identified as
the local « partially screened »
Coulomb interaction.
(constrained random-phase approximation)
F. Aryasetiawan et al, Phys Rev B 70, 195104 (2004)

A. . Lichtenstein & M. I. Katsnelson, Phys Rev B 57, 6884 (1998)
V. I. Anisimov et al, J. Phys. Cond Mat. 9, 7359 (1997)




DFT+DMFT as a first step...

However, « real » material are often far from the « idealized » Hubbard model...

WHAT DMFT CAN ALREADY DO

* Ordered phase can be captured : crossover between Mott and Slater insulator

« DMFT can be performed at finite temperature (Matsubara formalism)

 DMFT can be applied to multi-orbital Hubbard model (correlated materials) )

\_

DMFT EXTENSIONS

« Introducing non-local correlation via a k-depence in the self-energy : cluster-
DMFT, Vertex based extenstions (DI'A, dual methods)

* Applying the formalism to higher order correlation functions : Extended-DMFT

Applying the formalism for out of equilibrium systems : out of equilibrium DMFT /




Thank you for your attention



