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Motivations for the model

The many-electron Schrödinger equation with Coulomb potential

ĤΨ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN)

where (in the Born-Oppenheimer approximation)

Ĥ = T̂ + V̂ne + Ŵee

A divergent Coulomb interaction which leads to a electron-electron cusp:

Ŵee =
∑

i<j

1
|ri − rj|

→ Ψ(r12) = Ψ(r12 = 0)(1+
1
2

r12 + ...)
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1
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r12 + ...)

1 Wave-function theory (WFT)⇔ Ψ(r1, r2, ..., rN)
+ Systematic way to expand Ψ on a basis-set.
– Difficulty in converging the cusp behaviour.

2 Density-functional theory (DFT)⇔ n(r)
+ Hide the short-range interaction and the cusp issue in a functional of the density.
– Approximations are not universal and not systematically improvable
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Motivations for the model

Example - Helium ground-state energy:
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Motivations for the model

Probability of finding two electrons close to each other

n2(r1, r2)∝ density of probability of finding electron 1 at r1 when electron 2 is at r2.

Coulomb repulsion: electrons avoid each other.

Slow convergence with respect to the size of B.

Electron-pair density of the Helium atom:
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Motivations for the model

The many-electron Schrödinger equation with Coulomb potential

ĤΨ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN)

where (in the Born-Oppenheimer approximation)

Ĥ = T̂ + V̂ne + Ŵee

A divergent Coulomb interaction which leads to a electron-electron cusp:

Ŵee =
∑

i<j

1
|ri − rj|

→ Ψ(r12) = Ψ(r12 = 0)(1+
1
2

r12 + ...)

Goal
Use a model system to ease methods development and understanding.

To do list:

□ To reproduce the slow basis convergence of the ground-state energy.

□ To reproduce the electron-electron cusp.

□ Building a functional of the density.
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1D-Helium like atom

1D Helium-like atom Hamiltonian
2 electrons + 1 nucleus in a 1D space

Ĥ = T̂ + V̂ne + Ŵee

including:

The kinetic-energy operator of the ith electron: T̂ =
∑

i=1,2−1/(2m) ∂ 2/∂ x2
i

The ith electron interaction with the nucleus: V̂ne =
∑

i=1,2 vne(xi)

The interaction between both electrons: Ŵee = δ(x1 − x2)

Basis for the wave function:

Basis (Hermite-Gaussian functions): χn(x) = Nn(α)e−αx2
Hn(
p

2αx)

A model which reproduces the electron-electron cusp:

Ŵee = δ(x1 − x2)→ Ψ(x12) = Ψ(x12 = 0)(1+
1
2

x12 + ...)

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 (2022))
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Basis-set convergence of the ground state energy

External potential and basis set

External potential : vne(x) = −Zδ(x)

Basis (Hermite-Gaussian functions): χn(x) = Nn(α)e−αx2
Hn(
p

2αx)
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 (2022))
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To do list check

Goal
Use a model system to ease methods development and understanding.

To do list:

� To reproduce the slow basis convergence of the ground-state energy.

� To reproduce the electron-electron cusp.

□ Building a functional of the density.
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Building a LDA functional

A 2-electron 1D uniform electron gas:

n(x)

x
-L/2 L/2

n=N/L

L

n: Uniform density

N = 2: Number of electrons

L: size of the gas

Periodic boundary conditions

Hamiltonian

ĤUEG = T̂ + Ŵee

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 (2022))
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Building a LDA functional

Definition of the FCI energy and wave function

ĤUEG|ΨUEG〉= E|ΨUEG〉

Energy per particle

εUEG(n) =
E
N

and
εUEG(n) = ts,UEG(n) + ε

UEG
H (n) + εUEG

x (n)
︸ ︷︷ ︸

Exact ✓

+εUEG
c (n)

ts,UEG = 0

εUEG
H = n/2

εUEG
x = −n/4
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Building a LDA basis-set correction

Converged solution to the FCI correlation energy
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Building a LDA functional

UEG in a finite basis set:

Definition of the FCI and wave-function energy
The Hamiltonian

ĤB
UEG = T̂ + ŴB

ee + V̂B ,

where

ŴB
ee: interaction projected in the Hermite-Gauss basis set B,

V̂B: local potential operator keeping the density uniform.

and the Schrödinger equation
ĤB

UEG|Ψ
B
UEG〉= EB |ΨB

UEG〉

Energy per particle

εB,UEG(n) =
〈ΨB

UEG|T̂ + Ŵee|ΨB
UEG〉

N
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Building a LDA functional

UEG in a finite basis set:
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Application to the density-based basis-set correction

1D LDA-based basis-set correction

Definition of the correlation correction

ε̄B,UEG
c (n) : correlation energy per particle of the uniform electron gas (UEG) with the uniform density

n:
ε̄B,UEG

c (n) = εUEG(n)− εB,UEG(n)

LDA basis-set correction

ĒB
LDA[n] =

∫

dx n(x) ε̄B,UEG
c (n(x))

Finally,
EB = 〈ΨB

FCI|Ĥ|Ψ
B
FCI〉+ ĒB

LDA[nΨB
FCI
]

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 1-13 (2022))
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Application to the density-based basis-set correction

External potential and basis set

External potential : vne(x) = −Zδ(x)

Basis (Hermite-Gaussian functions): χn(x) = Nn(α)e−αx2
Hn(
p

2αx)
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 1-13 (2022))
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Test of the basis-set corrected linear-response equation

External potential and basis set

External potential: vne(x) = (1/2)ω2
0x2

Basis (Hermite-Gauss functions): χn(x) = Nn(α)e−αx2
Hn(
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 158, 234107 (2023))

Diata Traore January 2024 21 / 22



Test of the basis-set corrected linear-response equation

External potential and basis set

External potential: vne(x) = (1/2)ω2
0x2

Basis (Hermite-Gauss functions): χn(x) = Nn(α)e−αx2
Hn(
p

2αx)

First excitation energy:

1.875

1.880

1.885

1.890

1.895

1.900

1.905

 0  10  20  30  40  50  60

First excited state

E
x
c
it

a
ti

o
n

 e
n

e
rg

y
 (

E
h
)

Basis size nmax

Exact
FCI

LR-FCI+LDA

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 158, 234107 (2023))

Diata Traore January 2024 21 / 22



Test of the basis-set corrected linear-response equation

External potential and basis set

External potential: vne(x) = (1/2)ω2
0x2

Basis (Hermite-Gauss functions): χn(x) = Nn(α)e−αx2
Hn(
p

2αx)

First excited-state total energy:

3.180

3.190

3.200

3.210

3.220

3.230

 0  10  20  30  40  50  60

First excited state

T
o

ta
l 
e
n

e
rg

y
 (

E
h
)

Basis size nmax

Exact
FCI

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 158, 234107 (2023))

Diata Traore January 2024 21 / 22



Test of the basis-set corrected linear-response equation

External potential and basis set

External potential: vne(x) = (1/2)ω2
0x2

Basis (Hermite-Gauss functions): χn(x) = Nn(α)e−αx2
Hn(
p

2αx)

First excited-state total energy:

3.180

3.190

3.200

3.210

3.220

3.230

 0  10  20  30  40  50  60

First excited state

T
o

ta
l 
e
n

e
rg

y
 (

E
h
)

Basis size nmax

Exact
FCI

LR-FCI+LDA

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 158, 234107 (2023))

Diata Traore January 2024 21 / 22



Conclusions

Goal
Use a model system to ease methods development and understanding.

To do list:

� To reproduce the slow basis convergence of the ground-state energy.

� To reproduce the electron-electron cusp.

� Building a LDA correlation functional of the density.

Understanding of the density-based basis set correction.

Development of a strategy to apply density-based basis-set correction to excited-state energies.

Dirac’s equation with QED interactions (Timothee’s talk)
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