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The many-electron Schrédinger equation with Coulomb potential

AW(ry, 19,00, 1y) = EW(ry, T, .0, Ty)
where (in the Born-Oppenheimer approximation)

A=T+V, .+ W,

o A divergent Coulomb interaction which leads to a electron-electron cusp:

1
— U(ry) =¥(r, =0)(1+ Erlz +...)
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The many-electron Schrédinger equation with Coulomb potential

AW(ry, 19,00, 1y) = EW(ry, T, .0, Ty)
where (in the Born-Oppenheimer approximation)

A=T+V, .+ W,

o A divergent Coulomb interaction which leads to a electron-electron cusp:

1
— U(ry) =¥(r, =0)(1+ Erlz +...)

@ Wave-function theory (WFT) < ¥(rq, 1y, ..., Iy)
+ Systematic way to expand ¥ on a basis-set.
— Difficulty in converging the cusp behaviour.

@ Density-functional theory (DFT) < n(r)

+ Hide the short-range interaction and the cusp issue in a functional of the density.
— Approximations are not universal and not systematically improvable
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Example - Helium ground-state energy:
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Motivations for the model

Probability of finding two electrons close to each other

@ ny(rq,ry) o< density of probability of finding electron 1 at r; when electron 2 is at ry.
@ Coulomb repulsion: electrons avoid each other.

@ Slow convergence with respect to the size of B.

Electron-pair density of the Helium atom:

0.17
016 1 electron2
0.15 - =
0.14 - =
0.13 - =
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0.1 q
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0 (radian)
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The many-electron Schrodinger equation with Coulomb potential

AU(ry, 10,00, 1y) = EU(ry, T, .0 Ty)
where (in the Born-Oppenheimer approximation)

H=T+V,+ W,

@ A divergent Coulomb interaction which leads to a electron-electron cusp:

A 1 1
Wee = Z T 2 U(r) =0 =01+ Srp+ )
i |rl-—rj| 2

Use a model system to ease methods development and understanding.

To do list:

O To reproduce the slow basis convergence of the ground-state energy.
O To reproduce the electron-electron cusp.

O Building a functional of the density.

Diata Traore
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1D-Helium like atom

1D Helium-like atom Hamiltonian

2 electrons + 1 nucleus in a 1D space
i N A

including:
o The kinetic-energy operator of the ith electron: T = Zi=1,2 —1/(2m) 82/ 6’xi2

o The ith electron interaction with the nucleus: Vo = Y"1 5 vie ()

@ The interaction between both electrons: W, = &(x; —x5)
v

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 (2022))
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Basis for the wave function:
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1D-Helium like atom

1D Helium-like atom Hamiltonian

2 electrons + 1 nucleus in a 1D space

including:
o The kinetic-energy operator of the ith electron: T = Zi=1,2 —1/(2m) 82/ 6’xi2

o The ith electron interaction with the nucleus: Vo = Y"1 5 vie ()

@ The interaction between both electrons: W, = &(x; —x5)
v

Basis for the wave function:
o Basis (Hermite-Gaussian functions): y,(x) = Nn(a)e_’”‘an(\/ 2ax)

A model which reproduces the electron-electron cusp:

N 1

Wee = 6(x1 —x3) = W(x12) = ¥(x, = 0)(1 + ZX2t )
(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 (2022))
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External potential and basis set
o External potential : v,.(x) = —Z5(x)
o Basis (Hermite-Gaussian functions): y,(x) = Nn(a)e_‘”‘an(\/Zax)
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Exact
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Energy (Ep)
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-3.15 -
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 (2022))
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To do list check

Use a model system to ease methods development and understanding.

To do list:
v To reproduce the slow basis convergence of the ground-state energy.
v To reproduce the electron-electron cusp.
O Building a functional of the density.
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Building a LDA functional

A 2-electron 1D uniform electron gas:

n(x)

n=N/L
| | ' > X
-L/2 L/2
- T >

o n: Uniform density
@ N = 2: Number of electrons
@ L: size of the gas

@ Periodic boundary conditions

Ay =T+ Wee

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 (2022))
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Definition of the FCI energy and wave function

Ay [ ¥use) = E[¥ysg)

Energy per particle

E
UEG

€ (n)=—
W=+
and

€"*0(n) =ty up(n) + e 0 (n) + €°% (n) +€ 4 (n)
Exact v/
@ typg =0

° EEIEG =n/2

UEG _
o e =—n/4
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Building a LDA basis-set correction O UNIVERSITE

Converged solution to the FCI correlation energy
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Building a LDA functional S UNIVERSITE

UEG in a finite basis set:

Definition of the FCI and wave-function energy

The Hamiltonian

B _ 4, B 4 OB
Hypg =T+ W +V7,
where
° WeBe: interaction projected in the Hermite-Gauss basis set B,

@ VZ: local potential operator keeping the density uniform.

and the Schrédinger equation

B B _ B|gB
HUEGl\IJUEG>_E |\I/UEG)

Energy per particle

B 1441 B
B,UEG(n) _ (\I’UEG|T+ Weel"PUEG)
N

€
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Building a LDA functional
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UEG in a finite basis set:
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Building a LDA functional

SORBONNE
UNIVERSITE

UEG in a finite basis set:
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4. Application : a 1D-model for the development of density-based basis-set correction

Diata Traore January 2024 18/22



Application to the density-based basis-set correction S ONIVERSITE

1D LDA-based basis-set correction

Definition of the correlation correction

éf'UEG(n) : correlation energy per particle of the uniform electron gas (UEG) with the uniform density
n:

GC = —€
vV

—B,UEG(n) _ EUEG(H) B,UEG(n)

LDA basis-set correction

BB \[n] = f dx n(x) €3V (n(x))

Finally,
EP = ( FCIlHl FCI)+ LDA[n\pFBCl]

(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 1-13 (2022))
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Application to the density-based basis-set correction S ONIVERSITE

External potential and basis set

o External potential : v .(x) = —Z5(x)

o Basis (Hermite-Gaussian functions): y,(x) = Nn(a)e_“szn(\/ 2ax)
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys. 156, 044113 1-13 (2022))
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External potential and basis set

o External potential: v,.(x) = (1/ 2)(,0(2)x2

@ Basis (Hermite-Gauss functions): y,(x) = Nn(a)e*‘”‘an(w/ 2a.x)

Test of the basis-set corrected linear-response equation g

SORBONNE
UNIVERSITE

First excitation energy:

Excitation energy (E;)
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0
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EXaCt mem—
FCl %

20 30
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 158, 234107 (2023))
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 158, 234107 (2023))
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External potential and basis set

o External potential: v,.(x) = (1/ 2)(,0(2)x2

@ Basis (Hermite-Gauss functions): y,(x) = Nn(a)e*‘”‘an(w/ 2a.x)
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(D. Traore, E. Giner, J. Toulouse, J. Chem. Phys 158, 234107 (2023))
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Use a model system to ease methods development and understanding.

To do list:
v To reproduce the slow basis convergence of the ground-state energy.
v To reproduce the electron-electron cusp.
v Building a LDA correlation functional of the density.

@ Understanding of the density-based basis set correction.

@ Development of a strategy to apply density-based basis-set correction to excited-state energies.
@ Dirac’s equation with QED interactions (Timothee’s talk)
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