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Why do we use models?

→ To simplify (part of) a real material
interfaces, pseudopotentials, Born-Oppenheimer,…..

            We do this always. 
*Sometimes this maps onto a well-established model
   downfolding on low-energy subspace with effective interaction
*As a result of a general approximation
   approx. of near-sighted local self-energy makes AIM appear

→ To gain insight that can be extrapolated to real materials
homogeneous electron gas to simple metals         

→ To sharpen our (numerical) swords 
2D Hubbard model Qin et al., Annual Review Cond. Matter Physics 13, 275 (2022) 

→ To benchmark theoretical and numerical approaches
*because this is the only way we can do it         
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Photoemission of bulk aluminum

Experiment

Zhou, Reining, Nicolaou, Bendounan, Ruotsalainen,Vanzini, Kas, Rehr, Muntwiler, Strocov, Sirotti, Gatti,  
PNAS 117 (46), 28596 (2020)

From Damascelli et al.,
 RMP 75, 473 (2003)

 



Photoemission of bulk aluminum

GW+C spectrum 

Zhou, Reining, Nicolaou, Bendounan, Ruotsalainen,Vanzini, Kas, Rehr, Muntwiler, Strocov, Sirotti, Gatti,  
PNAS 117 (46), 28596 (2020)

GW+C++ 

cumulant

Experiment
→ Temperature
→ extrinsic scattering
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Periodic Hubbard model 

Hubbard J. 1963. Proc. R. Soc. Lond. Ser. A 276(1365):238–57
Kanamori J. 1963. Prog. Theor. Phys. 30(3):275–89
Gutzwiller MC. 1963. Phys. Rev. Lett. 10(5):159–62

Fig. From Qin et al., ARCMP 13, 275 (2022) 



Symmetric Hubbard dimer: 2 sites 

i=1,2



Symmetric Hubbard dimer: 2 sites 

i=1,2

D J Carrascal et al 2015 J. Phys.: Condens. Matter 27 393001
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Many things can happen to a particle that propagates in the middle of others......



→ S ~ i GW   “GW”L. Hedin, Phys. Rev. 139:A796–823, 1965

+ ….....+

Typical GFFT approximation strategy



Correlation self-energy:

GW
Bruneval, et al,
PRL 94, 186402 (2005) 

Hedin 1965
Martin, Reining, Ceperley
Interacting Electrons
(Cambridge 2016) 



No screening

Fock cancels SI

GW=HF=OK

 Zero, one, many: the Hubbard dimer with two
electrons in many-body perturbation theory 



Screening by N=1 electron

Screened Fock does not cancel SI

GW NOT OK

 Zero, one, many: the Hubbard dimer with two
electrons in many-body perturbation theory 



RenormalizationBroadening

Satellite



Romaniello, Guyot, Reining,  J. Chem. Phys. 131, 154111 (2009)
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Mean field interpretation of the density: ½ + ½ 
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Romaniello, Guyot, Reining,  J. Chem. Phys. 131, 154111 (2009)



Correlation self-energy:

GW
Bruneval, et al,
PRL 94, 186402 (2005) 

Hedin 1965
Martin, Reining, Ceperley
Interacting Electrons
(Cambridge 2016) 

Can we use TDDFT for better effective interactions?
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An old idea for the correlation self-energy:

Beyond GW, approximate vertex from TDDFT: 

Overhauser, PRB 3, 1888 (1971); Petrillo and Sacchetti, PRB 38, 3834 (1988); 
Mahan and Sernelius, PRL. 62, 2718 (1989); Hybertsen and Louie, PRB 34, 5390 (1986);
Del Sole, Reining, and Godby, PRB 49, 8024 (1994); Hindgren and Almbladh, PRB 56, 12832 (1997);
Schmidt, Patrick, and Thygesen, PRB 96, 205206 (2017);
Chen, Ambrosio, Miceli, and Pasquarello, PRL 117, 186401 (2016);
Shishkin, Marsman, and Kresse, PRL 99, 246403 (2007).

= v
c 
+
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This will have errors from the procedure

and from approx. of 
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Correlation energy (no kinetic contribution)



Correlation energy (no kinetic contribution)

V.M. Galitskii, A. M.  JETP 1950, 7, 96



Correlation energy (no kinetic contribution)

BSE
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diagonal
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Correlation energy (no kinetic contribution)

The (approximate!!!) GW self-energy
together with an xchange correction
yields the exact correlation energy

~
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Correlation energy (no kinetic contribution)

The (approximate!!!) GW self-energy
together with an xchange correction
yields the exact correlation energy

One of several choices: KS ingredients

~



The GW approx. self-energies yield the exact xc energy if the density is exact
           

and if the expression is evaluated consistently 

 

~
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QP G

KS G

Dyson G

Consistency is absolutely crucial
Milder for QP



With TDDFT vertex, error much reduced wrt GW



Adiabatic approx. for f
xc

KS G + Dyson + adiabatic
QP G + Dyson + adiabatic
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QP G + QP G + adiabatic
KS G + KS G + adiabatic



Adiabatic approx. for f
xc 

OK, better for KS

KS G + Dyson + adiabatic
QP G + Dyson + adiabatic
QP G + QP G + adiabatic
KS G + KS G + adiabatic



bonding anti-
bonding

Spectral function with approximate self-energies



bonding anti-
bonding

Spectral function: QP quite ok



bonding anti-
bonding

Spectral function: QP quite ok, satellites bad.



Spectral function: QP quite ok, satellites bad.

→ This is the worst error of GW

→ It is intrinsic to the use of TDDFT:

~

Excitations of  charged system

Chemical potentials, 1st QP

GW and GW put excitations of N electron system! 
Need 2 frequency vertex to fix this (or new effective W, thesis Abdallah). 

~



Guzzo et al., PRL 107, 166401 (2011)

In an extended system,
the satellite position is another pb.

Example where model has to be used
with caution!!!!
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The GW approx. self-energies yield the exact xc energy if the density is exact
           

and if the expression is evaluated consistently 

 

~

……. but not the exact G nor the exact density matrix nor kinetic energy!

→  When the TDDFT input is exact, QPs are quite ok while sat.s are bad 

→  The adiabatic approximation to the xc kernel does ok, better when KS

→  Consistency of the ingredients is most crucial for xc energy
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……. but not the exact G nor the exact density matrix nor kinetic energy!

→  When the TDDFT input is exact, QPs are quite ok while sat.s are bad 

→  The adiabatic approximation to the xc kernel does ok, better when KS

→  Consistency of the ingredients is most crucial for xc energy

Much more to show……

…………….since simple Hubard dimer allows us to explore quickly!

(but mind its limits)
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