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The Electron Correlation Problem

@ Schrddinger’s Equation (time-independent, fixed nuclei, non-relativistic)
Hv = Ev
It is an elliptic PDE with 3n independent variables (n ~ 1000 electrons)
Kato (1957), Hill (1985), Fournais et al. (2005), ...

@ We are interested in the lowest few eigenvalues (energies) E
@ We usually split the energy into “mean-field” and “non-mean-field” parts

E=Ewr + E;

(Easy) Eur = (Wur|H| W) / (Whe|Wer) where Wy is separable
(Hard) E. can be approximated in a variety of complicated ways
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The Electron Correlation Problem

Correlation made simple!
@ Studies find that E;[p] depends strongly on the domain dimensionality

@ Studies find that E;[p] depends weakly on the external potential
@ Wigner, Trans Faraday Soc 34 (1938) 678
@ Kohn & Sham, Phys Rev 140 (1965) A1133
@ Pople & Binkley, Mol Phys 29 (1975) 599
@ Fournais et al., Commun Math Phys 255 (2005) 183
@ Loos & Gill, Phys Rev Lett 105 (2010) 113001

() ’ E;[p] in complicated potentials is similar to E;[p] in simple potentials

.. We can learn about E. by studying electrons in simple potentials!

@ So, what super-simple potential will we choose for our electrons. .. ?
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Electrons on a sphere

The Hamiltonian
@ The Hamiltonian operator has only two types of term

@ |[f the radius of the sphere is R, then
The kinetic energy operator T o 1/R? separable

The potential energy operator V o< 1/R non-separable

@ These different behaviours suggest two perturbative approaches ...
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Electrons on a sphere

Perturbative approaches

1 = z 1
A=Y v84y —
2,; : ;lr/—rﬂ

o ’ R <« 1: the high-density regime ‘

o T dominates V. We say that the electrons are weakly correlated

@ Good starting point is a separable wavefunction

() ’ R > 1: the low-density regime ‘

e V dominates T. We say that the electrons are strongly correlated

@ Good starting point is a localized wavefunction
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Electrons on a sphere

1-sphere

@
N

Ring

(Na, Ng)-ringium

What spheres am | considering?
2-sphere

Normal sphere

(Na, Ng)-spherium
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Electrons on a sphere

But, because time is short today. ..
2-sphere

Normal sphere

(Na, Ng)-spherium
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Orbitals on a 2-sphere

(1,0)-spherium

Wavefunctions & Energies
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Orbital energies on a 2-sphere
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Hartree-Fock
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Hartree-Fock ground state for (1,1)-spherium

(i sphorom Wl HF vavoiuncion & onergy
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HF for (1,1)-spherium

(1,1)-spherium

Hartree-Fock
Exact
Higher states
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Exact ground state for (1,1)-spherium

Wavefunction & Energy

N Vi V3 1
H=—— - F=+—
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Exact ground state for (1,1)-spherium

Solving the Schrédinger equation
@ Changing variables to the reduced inter-electronic distance x = |ry — r2|/(2R)
and separating the Schrédinger equation yields, for 'S states, the Heun ODE

d2¢v 1] dy 2R
2 2
[x —1}?+|:3X—}]—X+71/)—4R61/)

@ This has polynomial solutions for particular R values, e.g.

R=./3/4 e=1 Yp=1+V3x
R=V7 e=2/7 p=14+V28x+5x2

@ There are a countably infinite number of such closed-form solutions
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Exact excited states for (1,1)-spherium

Solving the Schrédinger equation
@ Changing variables to the reduced inter-electronic distance x = |ry — r2|/(2R)
and separating the Schrédinger equation yields, for °P states, the Heun ODE

d2¢v 31 dy 2R
2 2
[x —1}74‘{5)(—}]74'71/)—45’61/)

@ This has polynomial solutions for particular R values, e.g.

R=./15/4 e=1/3 ¢ =1+/5/3x

R=+23 e=3/23 Y =142v23/3x+7/3 x?

@ There are a countably infinite number of such closed-form solutions
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Two electrons on a sphere

@ The same approach works for states of other symmetry
For example, 'P, 'D, 3D, 'F, ®F, etc.

@ The same approach works for spheres of other dimension
For example, (1,1)-ringium, (1,1)-glomium, etc.

@ In all cases, exact polynomial solutions exist for certain R

@ In some cases, exact irrational solutions exist for certain R

@ These solutions provide benchmarks for approximate methods
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(1,1)-spherium

Two electrons on a sphere

PRL 103, 123008 (2009)

PHYSICAL REVIEW LETTERS

Hartree-Fock
Exact
Higher states

week ending
18 SEPTEMBER 2009

Two Electrons on a Hypersphere: A Quasiexactly Solvable Model

Pierre-Frangois Loos and Peter M. W. Gill*
Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
(Received 5 July 2009; published 18 September 2009)

We show that the exact wave function for two electrons, interacting through a Coulomb potential but
constrained to remain on the surface of a D-sphere (D = 1), is a polynomial in the interelectronic
distance u for a countably infinite set of values of the radius R. A selection of these radii and the associated
energies are reported for ground and excited states on the singlet and triplet manifolds. We conclude that
the D = 3 model bears the greatest similarity to normal physical systems.

DOI: 10.1103/PhysRevLett.103.123008

Quantum mechanical models for which it is possible to
solve explicitly for a finite portion of the energy spectrum
are said to be quasiexactly solvable [1]. They have ongoing
value and are useful both for illuminating more compli-
cated systems and for testing and developing theoretical
approaches, such as density-functional theory (DFT) [2-4]
and explicitly correlated methods [5-8]. One of the most
famous two-body models is the Hooke’s law atom, which
consists of a pair of electrons repelling Coulombically but
trapped in a harmonic external potential with force con-
stant k. This system was first considered nearly 50 years
ago by Kestner and Sinanoglu [9], solved analytically in

Peter M.W. Gill

PACS numbers: 31.15.ac, 31.15.ve, 31.15.vj

The electronic Hamiltonian, in atomic units, is

W%, )
2 2 u (

A=
and, because each electron moves on a D-sphere, it is
natural to adopt hyperspherical coordinates [21,22].

For 'S states, it can be then shown [19] that the wave
function S(u) satisfies the Schrodinger equation
[ul ]111s+[(2D—|)147D—1]ds S

— a5t [ +2=ES.
4R? du? 4R? u Jdu u
@




(1,1)-spherium

Two electrons on a sphere

Molecular Physics
Vol. 108, Nos. 19-20, 10-20 October 2010, 2527-2532

Hartree-Fock
Exact
Higher states
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INVITED ARTICLE

Excited states of spherium

Pierre-Frangois Loos and Peter M.W. Gill*

Research School of Chemistry, Australian National University, Australian Capital Territory 0200, Canberra, Australia

(Received 21 April 2010; final version received 8 July 2010)

We report analytic solutions of a recently discovered quasi-exactly solvable model consisting of two electrons,
interacting via a Coulomb potential, but restricted to remain on the surface of a D-dimensional sphere.
Polynomial solutions are found for the ground state, and for some higher (L < 3) states. Kato cusp conditions

and interdimensional degeneracies are discussed.

Keywords: cxact solution; excited states; spherium; cusp condition; interdimensional degencracies

1. Introduction

A quasi-cxactly solvable model is one for which
it is possible to solve the Schrodinger equation cxactly
for a finite portion of the cnergy spectrum [1]. In
quantum chemistry, a famous example of this is the
Hooke’s law atom [2-5], which consists of a pair of
clectrons, repelling Coulombically but trapped in a
harmonic external potential. This model and others
[6-12] have been used extensively to test various
approximations [13-20] within density functional
theory (DFT) [21-23] and explicitly correlated meth-
ods [24-28].
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2. Wave function
The Hamiltonian of D-spherium is
L
H==3
where the two first terms represent the kinetic contri-
bution of cach clectron, and »~' is the Coulomb
operator.
Following Breit [38], we write the total wave
function as the product

({s1,52), {21, Qa), 0) = E(s1, ) x(21, )P (W), (2)

T w amd W oaea ha aein

@+ v [0)
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(1,1)-spherium

Two electrons on a sphere

PRL 108, 083002 (2012)

PHYSICAL REVIEW LETTERS

Hartree-Fock
Exact
Higher states

week ending
24 FEBRUARY 2012

Exact Wave Functions of Two-Electron Quantum Rings

Pierre-Frangois Loos* and Peter M. W. Gill"

Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
(Received 6 December 2011; published 23 February 2012)

We demonstrate that the Schrodinger equation for two clectrons on a ring, which is the usual paradigm
to model quantum rings, is solvable in closed form for particular values of the radius. We show that both
polynomial and irrational solutions can be found for any value of the angular momentum and that the
singlet and triplet manifolds, which are degencrate, have distinct geometric phases. We also study the
nodal structure associated with these two-electron states.

DOL: 10.1103/PhysRevLett.108.083002

Introduction.—Like quantum dots [1], quantum rings
(QR) are self-organized nanometric semiconductors and
are intensively studied experimentally due to their rich
electronic, magnetic, and optical properties [2-7], such
as the Aharonov-Bohm effect [8-10].

Many-electron QRs have been investigated Lheoreu-

PACS numbers: 31.15.ac, 31.15.ve, 31.15.vj, 73.21.La

u= R‘/Z —2cos(6, — 6,) ?2)

is the interelectronic distance [32]. In one dimension, the
singlet and triplet manifolds are degenerate [33], and this
allows us to focus primarily on the singlets.

Hartree-Fock solution—Within the Hartree-Fock (HF)

cally using various methods, such as model F
[11-13], exact diagonalization [14,15], quantum
Monte Carlo calculations [15,16], and density-functional
theory [17-20]. Accurate numerical calculations on
two-electron QRs have been reported in Ref. [21].
Quantum rings are usually modeled by electrons con-
fined to a strict- or quasi-one-dimensional circular space
interacting via a short-ranged or Coulomb operator. In this

Peter M.W. Gill

[35], the d-state wave function is

simply
V() = u, 3)
which has a node at u = 0, and the energy is
1 2
= —. 4
TR wR @
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More than two electrons on a sphere

The Three-Body Problem
@ Unfortunately, we find no such exact solutions for three electrons

@ The Hamiltonian is

N Vi VS V3 1 1 1

but our attempts to find a helpful change of variables have failed
@ Can it be proven that no polynomial or irrational solutions exist?

@ (n., ng)-spherium with n., ng > 1 is nonetheless interesting
@ Many such systems are finite uniform electron gases (FUEGS)

@ Time is short, so | will discuss only (n., 0)-spherium today. ..

Peter M.W. Gill Finite Uniform Electron Gases
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Hartree-Fock for (n, 0)-spherium

Finite Uniform Electron Gases (FUEGS)
@ We are particularly interested in systems with uniform densities

@ We therefore focus on systems with (half-) filled shells
@ To fill all orbitals with £ < h, we require n = (h + 1) electrons
@ Thus, we consider (1,0)-, (4,0)-, (9,0)-, (16,0)-spherium, etc.

Peter M.W. Gill Finite Uniform Electron Gases
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(4,0)-spherium

HF occupied orbitals (h = 1) HF wavefunction & energy

4 4
i lygrey
2 i<j Iri =l

\ 111 Wir = det [Yem(7)]4 4

3 11
_’_7

mo s 4 3 2 a4 o0 a4 a s o ows EHF:W G
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(9,0)-spherium

HF occupied orbitals (h = 2) HF wavefunction & energy

e e e e - - 18 9 1
. q_ 1 2
ey H= 2;V,+;m_m

S e S e T e e T e Sl el e = Yl
: 1111l
. .L.L.L WHF:det[Ylm(rj)]ng
I £ 2, 1004

"~ R2 " 315R

4
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(16,0)-spherium

HF occupied orbitals (h = 3) HF wavefunction & energy

1 16 16 1
————————— A= Vz—f—
22V 2 i

Wir = det [Yem(r)] 16516

_ 15 , 37657
~ 4R2 " 6006R

m s a4 3 a2 1 o 4 2w ow s EHF
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Configuration Interaction for (n, 0)-spherium

Approximating the exact many-electron wavefunction

@ Computing the Hartree-Fock energy Eyr is easy for any h

@ But how can we estimate the correlation energy E;?

@ Obvious approach is to admix all possible substituted determinants
V=Wt Y CWat+ > ChVa+ Y ChVaet- ..

revirt rsevirt rstevirt
acocc abeocc abceocc

@ None of the W} determinants mix with Wyr so simplest approximation is

Ve = Wik + Z CapVab

rsevirt
abeocc

@ However, the number of W7, determinants can be impractically large. ..

ite Uniform Electron Gases
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CID for (9, 0)-spherium using orbitals up to L = 4

’Consider pd — fg double substitutions‘

HF occupied orbitals (h = 2) The determinant explosion

e e e Y S @ 3 x 5= 15 pd choices

o m em e mm omm - Q —_ 7 x 9 = 63 fg choices

—-_— @ 15 x 63 = 945 determinants (!)

1 @ Conserve M = my + mp = 97 dets
1 There are too many determinants

@ Are we fully exploiting symmetry?
I I T Definitely not. But who can help us?

ite Uniform Electron Gases
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Two Masters of Invariants

Alfred Clebsch (1833 — 1872) Paul Gordan (1837 — 1912)

Peter M.W. Gill Finite Uniform Electron Gases
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The Key Solution

’ Consider pd — fg double substitutions‘

HF occupied orbitals (h = 2) Clebsch-Gordan invariants

S o e e e e e e o = @ PRD=P®D®F
¢ oo oo o Q_ 3x5=3+5+7
’ -Q _____ Q@ FRG=PoDeFaeGaeHa oK
1110 7x9=3+5+7+9+11+13+15
: @ll @ CSFs? P+ P,D«> Dand F <+ F
.L @ Adds only 3 terms to Cl expansion

U 5 4 3 2 4 0 a4 o a w @ Now we are exploiting symmetry!

ite Uniform Electron Gases
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Cheap CI calculations

Size of the Cl matrices for (4,0)-spherium

CISD CISDT CISDTQ
L Determinants CSFs Determinants CSFs Determinants CSFs
1 1 1 1 1 1 1
2 61 2 41 3 6 3
8] 397 4 881 9 496 11
4 1261 6 5321 19 5986 29
5 2977 8 19841 35 35961 66
6 5941 10 56761 57 148996 136
7 10621 12 136 881 87 487 636 257
8 17557 14 292601 125 1353276 450
9 27361 16 571521 173 3321961 751
10 40717 18 1040521 231 7413706 1193
11 58381 20 1790321 301 15329616 1824
12 81181 22 2940521 383 29772766 2701
13 110017 24 4645121 479 54870481 3889
14 145861 26 7098521 589 96717 336 5460




Hartree-Fock
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Cheap CI calculations

Size of the Cl matrices for (9,0)-spherium

CISD CISDT CISDTQ
L Determinants CSFs Determinants CSFs Determinants CSFs
2 1 1 1 1 1 1
3 757 4 2941 12 4411 21
4 4321 11 47041 71 229321 277
5 12637 20 245701 209 2211301 1410
6 28081 30 829921 466 11515141 4651
7 53461 40 2203741 859 42972931 11859
8 92017 50 5009 761 1428 129627 541 25690
9 147 421 60 10204 741 2178 336756 421 49602
10 223777 70 19145281 3151 782563 321 88065
11 325621 80 33683581 4345 1667337211 146 536
12 457921 90 56273281 5806 3313089361 231704
13 626077 100 90085 381 7528 6215891221 351437
14 835921 110 139134241 9561 11113347421 515057
15 1093717 120 208413661 11895 19069 849 891 733260




Hartree-Fock
Configuration Interaction
(n,0)-spherium Configuration State Functions

Cheap CISD calculations

Reduced CISD correlation energies (mEjy) for rs = 1

L N (4,0) (9,0) (16,0) (25,0)

25 -13.077115 —14.438486 — 8.806632 — 0.000000
8 81 -13.289706 —-17.119196 17973776 —16.775979
16 289 -13.306860 —17.254243 -18.586734 —18.819193
32 1089 -13.308117 —-17.262700 -18.617592 —18.903864
64 4225 -13.308203 —-17.263243 -18.619453 —18.908623

128 16641 -13.308208 —-17.263277 -18.619569 —18.908912
256 66 049 -13.308209 —-17.263280 -18.619576 —18.908930
512 263169  —13.308209 —-17.263280 —18.619577 —18.908931
1024 1050625 —-13.308209 —-17.263280 —18.619577 —18.908931
(%) 'S} -13.308209 —-17.263280 -18.619577 —18.908931
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Concluding Remarks

@ Electrons confined to D-spheres often form finite uniform electron gases
@ The Schrddinger eqgn is exactly solvable for two electrons on a D-sphere
Many of the exact wavefunctions are polynomials in |ry — rz|
These solutions are useful benchmarks for approximate methods

@ For many electrons on a sphere, Wyr and Egr are easy to compute

The use of Configuration State Functions permits huge CID calculations

Peter M.W. Gill
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Low-density electrons on a 3-sphere

THE JOURNAL OF CHEMICAL PHYSICS 143, 084114 (2015)

Uniform electron gases. lll. Low-density gases
on three-dimensional spheres

Davids Agboola, Anneke L. Knol, Peter M. W. Gill,? and Pierre-Frangois Loos®
Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia

(Received 23 June 2015; accepted 10 August 2015; published online 25 August 2015)

By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF)
calculations, we have obtained near-exact correlation gies for low-density pin electrons
on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC
calculations, we compare the efficacies of two types of one-electron basis functions for these strongly
correlated systems and analyze the energy convergence with respect to the quality of the Jastrow
factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space
analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized
into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the
minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have
found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of
four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and
the 24-cell (n = 24) — and a fourth is a highly symmetric structure (» = 13) which has not previously
been reported. By calculating the harmonic frequencies of the electrons around their equilibrium
positions, we also find the first-order vibrational corrections to the Thomson energy. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4929353]
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