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Introduction: Relativity

• Relativity has explained some physical
properties

1. yellow color of gold 1

2. liquid state of mercury at room
temperature 2

• Encounters some heavy problems when
facing the quantum electrodynamics
(QED) interactions in 3D

Figure 1: IP of gold with different
levels of approximation3

Why don’t we look at a 1D model to have a better understanding?

1P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004)
2K. Steenbergen, E. Pahl and P. Schwerdtfeger, J. Phys. Chem. Lett. 8, 1407 (2017)
3P. Schwerdtfeger et al., Phys. Rev. Let. 118, 023002 (2017)
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Introduction: 1D Model

• 1D model have been shown pretty efficient in understanding a
non-relativistic problem (Diata’s talk)

• Most of the actual calculation are done with the “no-pair”
approximation

• Develop a no-photon effective QED framework4

Purposes
□ To develop an analytical solution of the 1D problem
□ To have a better understanding of the physical issues of QED

interactions
□ To develop this problem in a finite basis set

4P. Chaix and D. Iracane, J. Phys. B 22, 3791 (1989)
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3D Dirac’s operator
Dirac operator

D = c (α⃗αα · p⃗)+ βββ mc2 + V, (1)

• α⃗αα =

(
0 σ⃗
σ⃗ 0

)
where σ⃗ = {σx , σy , σz} are the Pauli matrices

• βββ =

(
I2 0
0 −I2

)

Dirac equation

Dψψψ = Eψψψ (2)

• ψψψ =

(
ψL

ψS

)
where ψL/S =

(
ψ

L/S
α

ψ
L/S
β

)
• E is the energy of the state ψψψ
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Properties of the relativistic Hamiltonian
Non-relativistic spectrum

H = − ∆

2m
+ V (3)

Spectrum:
• If E > 0: continuum
• If E < 0: bound states

Relativistic spectrum

D = c (α⃗αα · p⃗)+ βββ mc2 + V (4)

Spectrum:
• If E ∈ (−∞,−mc2]∪ [mc2,+∞): continuum
• If E ∈ (0,mc2): bound states

⇒ Negative continuum spectrum
5 / 20



Introduction Dirac’s equation 1D Model QED Effects Conclusion

How to deal with the negative continuum

No-pair approximation
• Solving the Dirac equation
• Projecting it on the positive energy part

QED treatment of negative energy electrons
• Solving the Dirac equation
• Filling the negative part with electrons
• QED description of the system

6 / 20



Introduction Dirac’s equation 1D Model QED Effects Conclusion

How to deal with the negative continuum

No-pair approximation
• Solving the Dirac equation
• Projecting it on the positive energy part

QED treatment of negative energy electrons
• Solving the Dirac equation
• Filling the negative part with electrons
• QED description of the system

6 / 20



Introduction Dirac’s equation 1D Model QED Effects Conclusion

1D Dirac’s operator5
Free Dirac operator

D0,x = c αααx px + βββ mc2, (5)

• From this 1D operator we can make an unitary transformation

UUU =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


• Define a new operator D′

0,x = UUUD0,xUUU−1 =

(
D0 0002
0002 D0

)
• Where

D0 = c σσσx px + σσσz mc2

is a 2× 2 operator!
5T. Audinet, J. Toulouse, J. Chem. Phys. 158, 244108 (2023)
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1D Dirac’s equation
1D Free Dirac operator

D0 = c σσσx px + σσσz mc2, (6)

• with domain: Dom(D0) = H1(R, C)⊗ C2

• where: H1(R, C) = {ψ ∈ L2(R, C)|dψ/dx ∈ L2(R, C)} is the
first-order Sobolev space

1D Free Dirac equation

D0ψψψ = Eψψψ, (7)

• Ek =
√
k2c2 +m2c4

ψψψg
+,k(x) = Ak

(
cos(kx)

isk sin(kx)

) • Ek = −
√
k2c2 +m2c4

ψψψg
−,k(x) = Ak

(
isk cos(kx)
sin(kx)

)
• where sk goes to zero when c → ∞
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Hydrogen-like Dirac operator

D = D0 − Zδ(x)I2, (8)

• Ambiguity on the action of a delta distribution on discontinuous
functions

• The action of D is defined such that Dψψψ = D0ψψψ, ∀ x ̸= 0
• with domain

Dom(D) = {ψ̃ψψ ∈ H1(R\{0}, C)⊗ C2| ψ̃ψψ(0+) = Mψ̃ψψ(0−)}

• where M enforces the continuity of the density ψ̃ψψ
†
ψ̃ψψ at x = 0

M =

(
cos θ i sin θ
i sin θ cos θ

)
; with θ = 2 arctan(Z/2c) (9)
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Hydrogen-like Dirac equation

Dψ̃ψψ = Ẽψ̃ψψ, (10)

• This Hamiltonian has a single bound state

ψ̃ψψ1(x) = A

(
1

iλ sgn(x)

)
e−κ|x | (11)

• with energy Ẽ1 = mc2 1−λ2

1+λ2 , with λ = Z
2c

• Non-relativistic limit of the bound-state eigenfunction

lim
c→∞

ψ̃ψψ1(x) =
√
mZ

(
1
0

)
e−mZ |x | (12)
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Summary: Solving the one-electron 1D Dirac equation

Free Dirac equation

D0ψψψp = Epψψψp (13)

Spectrum:
• Continuum: Ek = ±

√
m2c4 + k2c2

Hydrogen-like Dirac equation

Dψ̃ψψp = (D0 − Zδ(x)) ψ̃ψψp

= Ẽpψ̃ψψp (14)

Spectrum:
• Bound State: Ẽb = mc2 1−λ2

1+λ2 with λ = Z/2c

• Continuum: Ẽk = ±
√
m2c4 + k2c2

E

11 / 20
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QED Effects

• Need to describe an infinite number of particles
• Need to take into account the two-electron

interaction

• How to compute the energy of an infinite
amount of particles? It diverges

• Define a reference → the free vacuum

E
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Vacuum Polarization

• Spontaneous creation of electron positron
pairs due to the external potential

• Creates a charge density that will interact
through the two-electron interaction

nvp
1 (x , x ′) = ∑

Ẽp<0

ψ̃p(x)ψ̃
†
p(x

′)− ∑
Ep<0

ψp(x)ψ
†
p(x

′)

• In 3D this quantity diverges, needs to be
renormalized

• We want to have a better understanding of
this quantity and its influence on the energy
spectrum

E

13 / 20
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Vacuum Polarization Density – Analytical form
Analytical expression

nvp(x) = tr [nvp
1 (x , x)] = ∑

Ẽp<0

ψ̃†
p(x)ψ̃p(x)− ∑

Ep<0
ψ†
p(x)ψp(x)

= −
∫ ∞

0

dk
π

κ

k2 + κ2

(
κ cos(2k |x |)− Ẽb

Ek
sin(2k |x |)

)
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Vacuum Polarization Density – Convergence test
Hermite-Gaussian functions

∀x ∈ R, f α
n (x) = Nα

nHn(
√

2αx)e−αx2
(15)

• Orthonormal basis set of L2(R, C) in the limit n → ∞

- 0.4 - 0.2 0.2 0.4

- 1

1

2

3

Figure 2: Vacuum polarization density nvp(x) as a function of x for c = 1 and nmax = 800.
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Uehling Density
First-order vacuum polarization density in Z

nvp,(1)(x) = −Zm

π

∫ ∞

1
dt

e−2mc |x |t

t
√
t2 − 1

(16)

16 / 20
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First-order correction energy

One-body density matrix for any system

n1(x , x ′) = nel
1 (x , x ′)+ nvp

1 (x , x ′) (17)

• nel
1 (x , x ′) = ∑N

i=1 ψ̃i (x)ψ̃
†
i (x

′)

• nvp
1 (x , x ′) = ∑ε̃p<0 ψ̃p(x)ψ̃

†
p(x

′)− ∑εp<0 ψp(x)ψ
†
p(x

′)

• Through the two-electron interaction → interaction between the
electronic density and the vacuum-polarization density

• Direct contribution: E (1),D
N =

∫
nel(x)nvp(x)dx

• Exchange contribution: E (1),X
N = −

∫
tr
[
nel

1 (x)n
vp
1 (x)

]
dx

17 / 20
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Lamb shift
Lamb shift

Correction to the 1s orbital energy of the hydrogen spectrum due to the
interaction between the electrons and the vacuum polarization density

ED
Lamb =

∫
n1s(x)n

vp(x)dx

EX
Lamb = −

∫
tr [n1s(x)nvp(x)] dx
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Summary: QED effects

• Developed a nice QED model
• Developed and found an analytical expression of the vacuum

polarization density
• Found a reasonable approximation to compare it to 3D
• We have been able to compute its interaction with the electrons of

the system

Purposes

! To develop an analytical solution of the 1D problem
! To have a better understanding of the physical issues of QED

interactions
% To develop this problem in a finite basis set

19 / 20
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Conclusion

• QED effects are the next challenge of relativistic quantum chemistry
• Nowadays some codes offer such calculations but only for atoms and

with some approximations
• This 1D model help us to understand this problem
• Develop a code to reproduce the analytic results and overcome most

of the difficulties

Perspectives

• Add correlation to the code
• Generalize the problem to molecules
• Develop relativistic functional beyond the no-pair approximation for

molecules

20 / 20



Introduction Dirac’s equation 1D Model QED Effects Conclusion

Conclusion

• QED effects are the next challenge of relativistic quantum chemistry
• Nowadays some codes offer such calculations but only for atoms and

with some approximations
• This 1D model help us to understand this problem
• Develop a code to reproduce the analytic results and overcome most

of the difficulties

Perspectives

• Add correlation to the code
• Generalize the problem to molecules
• Develop relativistic functional beyond the no-pair approximation for

molecules

20 / 20



Second Quantized Hamiltonian

Fermionic Fock space
• Fock space:

F =

(MPS,MNS)⊕
(n,m)=(0,0)

H(n,m) =
MPS⊕

q=−MNS

Fq (18)

• with: Fq = H(q,0) ⊕H(q+1,1) ⊕ · · · ⊕H(MPS ,MNS−q)

• Fermionic

∀p, q ∈ PS, {b̂p , b̂†
q} = δpq and ∀p, q ∈ NS, {d̂p , d̂†

q} = δpq

• Dirac field operator6

ψ̂ψψ(x) = ∑
p∈PS

ψp(x)b̂p + ∑
p∈NS

ψp(x)d̂
†
p (19)

6P. Chaix and D. Iracane, J. Phys. B 22, 3791 (1989)
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Second Quantized Hamiltonian

Second Quantization7

Normal ordered density operator
n̂1(x , x ′) = ψ̂ψψ

†
(x ′)⊗ ψ̂ψψ(x)− ⟨0| ψ̂ψψ†

(x ′)⊗ ψ̂ψψ(x) |0⟩ (20)

Normal-ordered second quantized full Hamiltonian

Ĥ =
∫

tr
[
D(x)n̂1(x , x ′)

]
x ′=x

dx +
1
2

∫∫
Tr[w(x1, x2)n̂2(x1, x2)]dx1dx2

• w(x1, x2) = δ(x1 − x2) (I2 ⊗ I2 − σ1 ⊗ σ1)

• Normal-ordered pair density-matrix operator: n̂2(x , x ′)
• tr and Tr designate the trace for 2× 2 and 4× 4 matrices

7P. Chaix and D. Iracane, J. Phys. B 22, 3791 (1989)
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Second Quantized Hamiltonian

Vacuum polarization origin

Vacuum Polarization
The vacuum polarization is the expectation
value of the normal ordered density on the
polarized vacuum

∣∣0̃〉
nvp

1 (x , x ′) =
〈
0̃
∣∣n̂1(x , x ′)

∣∣0̃〉 (21)

=
〈
0̃
∣∣ ψ̂ψψ†

(x ′)⊗ ψ̂ψψ(x)
∣∣0̃〉

− ⟨0| ψ̂ψψ†
(x ′)⊗ ψ̂ψψ(x) |0⟩

= ∑
ε̃p<0

ψ̃p(x)ψ̃
†
p(x

′)

− ∑
εp<0

ψp(x)ψ
†
p(x

′)

E

3 / 3
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