Relativistic electrons coupled with Newtonian nuclear dynamics

Workshop on Model Systems in Quantum Mechanics

Umberto Morellini

CEREMADE, Université Paris Dauphine - PSL (Paris IX)
12 January 2024

Introduction

Nonrelativistic: well-known N-body Schrödinger theory

$$
H=-\sum_{k=1}^{M} \frac{1}{2 m_{k}} \Delta_{\bar{x}_{k}}-\sum_{i=1}^{J} \frac{1}{2} \Delta_{x_{i}}-\sum_{i=1}^{J} \sum_{k=1}^{M} \frac{z_{k}}{\left|x_{i}-\bar{x}_{k}\right|}+\sum_{1 \leq i<j \leq J} \frac{1}{\left|x_{i}-x_{j}\right|}+\sum_{1 \leq k<l \leq M} \frac{z_{k} z_{l}}{\left|\bar{x}_{k}-\bar{x}_{l}\right|},
$$

(M nuclei of mass m_{k} and charge z_{k}, J electrons of unitary mass and charge).
Atoms with heavy nuclei $(\mathrm{Au}: Z=79) \rightarrow$ non-negligible relativistic effects $\left(v_{\text {electron }} \approx \frac{Z c}{137}\right)$.

The Dirac operator

Relativistic motion of spin-1/2 particles (electrons):

$$
D^{0}=-i c \boldsymbol{\alpha} \cdot \nabla+\beta m c^{2},
$$

where (standard representation in \mathbb{C}^{4})

$$
\beta=\left[\begin{array}{cc}
\mathbb{1}_{\mathbb{C}^{2}} & 0 \\
0 & -\mathbb{1}_{\mathbb{C}^{2}}
\end{array}\right], \quad \alpha_{i}=\left[\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right], \quad i=1,2,3,
$$

with $\sigma_{i}, i=1,2,3$, Pauli matrices.

Derivation $=$ energy-momentum relation $E^{2}=m^{2} p^{2}+m^{2} c^{4}+$ linearisation + first quantisation.

The spectrum of D^{0}

$$
\sigma\left(D^{0}\right)=\left(-\infty,-m c^{2}\right] \cup\left[m c^{2},+\infty\right)
$$

Consequences:

- Negative energy states $=$ virtual electrons \rightarrow Dirac sea $P^{0}=\mathbb{1}_{(-\infty, 0)}\left(D^{0}\right)$. $\sigma\left(D^{0}\right)$

- No equivalent of N-body Schrödinger theory involving D^{0} (recall $\sigma(-\Delta)=[0,+\infty)$ on \mathbb{R}^{3}).
- Inconsistencies in Dirac(-Hartree)-Fock model: ground state \neq minimiser of physical energy.
$\ldots \Longrightarrow$ Quantum electrodynamics $=$ matter (charged particles) and light (photons) interaction (special relativity + QM).

QED $=$ perturbation theory \rightarrow restricted range of applications.
Nonperturbative physical situations:

- Heavy atoms (strong electric field) \leftarrow our starting example!
- Neutron stars (strong magnetic field).
\Longrightarrow Bogoliubov-Dirac-Fock model: nonperturbative mean-field approximation of QED.

The Bogoliubov-Dirac-Fock model

No photons QED Hamiltonian in Coulomb gauge (second quantisation):

$$
\mathbb{H}^{\varphi}=\int \Psi^{*}(x) D^{0} \Psi(x) d x-\int \varphi(x) \rho(x) d x+\frac{\alpha}{2} \iint \frac{\rho(x) \rho(y)}{|x-y|} d x d y^{1} .
$$

1. Compute an energy functional by means of an Hartree-Fock approximation:

$$
\mathcal{E}_{\mathrm{HF}}^{\varphi}(P)=\left\langle\Omega_{P}, \mathbb{H}^{\varphi} \Omega_{P}\right\rangle,
$$

where Ω_{P} is an "infinite Slater determinant" corresponding to an orthogonal projection P on $L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{2}\right)$.

[^0]
The Bogololiubov-Dirac-Fock model

2. Take the (infinite) energy of the free vacuum as a reference:

$$
\mathcal{E}_{\mathrm{BDF}}^{\varphi}(Q)=\mathcal{E}_{\mathrm{HF}}^{\varphi}(P)-\mathcal{E}_{\mathrm{HF}}^{0}\left(P^{0}\right) .
$$

3. Define P^{0}-trace class ${ }^{2}$ and add an ultraviolet cutoff $\Lambda>0$ (operator space $\mathcal{H}_{\Lambda}{ }^{3}$) to get a well defined energy functional:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{BDF}}^{\varphi}(Q)=\operatorname{Tr} \mathrm{Tr}_{p o}\left(D^{0} Q\right) & -\alpha \int_{\mathbb{R}^{3}} \rho_{Q}(x) \varphi(x) d x \\
+ & +\frac{\alpha}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\rho_{Q}(x) \rho_{Q}(y)}{|x-y|} d x d y-\frac{\alpha}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|Q(x, y)|^{2}}{|x-y|} d x d y .
\end{aligned}
$$

$$
\begin{aligned}
& { }^{2} \operatorname{Tr}_{p_{0}}(A)=\operatorname{Tr}\left(P^{0} A P^{0}\right)+\operatorname{Tr}\left(\left(1-P^{0}\right) A\left(1-P^{0}\right)\right) \\
& { }^{3} \mathcal{H}_{\Lambda}=\left\{Q \in \mathfrak{S}_{2}\left(\mathfrak{H}_{\Lambda}\right) ; \rho_{Q} \in \mathcal{C}\right\} \text { where } \mathfrak{H}_{\Lambda}=\left\{f \in L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right) ; \widehat{f} \subseteq B(0, \Lambda)\right\}
\end{aligned}
$$

The BDF evolution equation

Energy functional $\mathcal{E}_{\text {BDF }}^{\varphi} \rightarrow$ Euler-Lagrange equation:

- Stationary: $\left[D_{Q}, P\right]=0$.
- Nonstationary: $i \frac{d}{d t} P=\left[D_{Q}, P\right] \leftarrow$ Von Neumann equation.
with $D_{Q}:=\mathcal{P}_{\wedge}\left(D^{0}-\alpha \varphi+\alpha \rho_{Q} * \frac{1}{|\cdot|}-\alpha \frac{Q(x, y)}{|x-y|}\right) \mathcal{P}_{\Lambda}{ }^{4}$ (mean-field operator).

[^1]
Coupling with Newtonian nuclear dynamics

- M classical nuclei $\left(m_{\text {nucleon }} \approx 1836 m_{\text {electron }}\right)$: charges z_{k}, masses m_{k}, and centers of mass $\bar{x}_{k}, k=1, \ldots, M$.
- Normalised nuclei charge distributions f_{k} such that $\varphi_{k}=f_{k}\left(\left|\cdot-\bar{x}_{k}\right|\right) *|\cdot|^{-1}$ are the associated potentials.
- Nucleus-electron interactions (Coulomb space $\mathcal{C}=\dot{H}^{-1}$) + nucleus-nucleus interactions:

$$
\begin{aligned}
& W_{Q}\left(t, \bar{x}_{1}, \ldots, \bar{x}_{M}\right)=\alpha \sum_{i=1}^{M} \int_{\mathbb{R}^{3}} \frac{\overline{\hat{\rho}_{Q(t)}(k)} z_{i} f_{i}(\widehat{\mid \cdot-\bar{x}} i \mid)(k)}{|k|^{2}} d k \\
& \quad-\alpha \sum_{1 \leq i<j \leq M} \iint \frac{z_{i} f_{i}\left(\left|x-\bar{x}_{i}\right|\right) z_{j} f_{j}\left(\left|y-\bar{x}_{j}\right|\right)}{|x-y|} d x d y
\end{aligned}
$$

Coupling with Newtonian nuclear dynamics

- Coupled equations + Cauchy data:

$$
\left\{\begin{array}{l}
i \frac{d}{d t} P(t)=\left[D_{Q, \bar{x}_{1}, \ldots, \bar{x}_{M}} P(t)\right], \\
m_{k} \frac{d^{2}}{d t^{2}} \bar{x}_{k}(t)=-\nabla_{\bar{x}_{k}} W_{Q}\left(t, \bar{x}_{1}, \ldots, \bar{x}_{M}\right), \quad k=1, \ldots M, \\
P(0)=P_{l}, P(t)^{2}=P(t), Q(t)=P(t)-P(0) \in \mathcal{H}_{\Lambda}, \\
\bar{x}_{k}(0)=\bar{x}_{k}^{0} \in \mathbb{R}^{3}, \frac{d \bar{x}_{k}}{d t}(0)=\bar{v}_{k}^{0} \in \mathbb{R}^{3}, \quad k=1, \ldots M,
\end{array}\right.
$$

- Total energy of the system:

$$
\begin{aligned}
E^{(M)}\left(Q(t), \bar{x}_{1}(t), \ldots, \bar{x}_{M}(t)\right) & =\mathcal{E}_{\mathrm{BDF}}^{\varphi}(Q(t))+\frac{1}{2} \sum_{k=1}^{M} m_{k}\left|\dot{\bar{x}}_{k}(t)\right|^{2} \\
& +\alpha \sum_{1 \leq i<j \leq M} \iint \frac{z_{i} f_{i}\left(\left|x-\bar{x}_{i}(t)\right|\right) z_{j} f_{j}\left(\left|y-\bar{x}_{j}(t)\right|\right)}{|x-y|} d x d y
\end{aligned}
$$

Main result

Theorem (U.M. 2023)
Let $0 \leq \alpha<4 / \pi$ and $f_{k} \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right) \cap \mathcal{C}, k=1, \ldots M$. Let P_{l} be an orthogonal projector such that $Q_{I}=P_{I}-P^{0} \in \mathcal{H}_{\Lambda}$ and $\bar{x}_{k}^{0}, \bar{v}_{k}^{0} \in \mathbb{R}^{3}, k=1, \ldots M$. Then there exists a unique global solution

$$
\left(Q, \bar{x}_{1}, \ldots, \bar{x}_{M}\right) \in C^{1}\left([0,+\infty), \mathcal{H}_{\Lambda}\right) \times\left(C^{2}\left([0,+\infty), \mathbb{R}^{3}\right)\right)^{M}
$$

of system (Σ). Moreover, $Q(t)=P(t)-P^{0}$ is P^{0}-trace class and

$$
\operatorname{tr}_{p_{0}}(Q(t))=\operatorname{tr}_{p_{0}}\left(Q_{l}\right)
$$

and

$$
E^{(M)}\left(Q(t), \bar{x}_{1}(t), \ldots, \bar{x}_{M}(t)\right)=E^{(M)}\left(Q_{I}, \bar{x}_{1}^{0}, \ldots, \bar{x}_{M}^{0}\right),
$$

for all $t \in[0,+\infty)$.
Don't hesitate to ask me for the PROOF!

Thanks for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement $N^{\circ} 945332$.

Bonus track: proof step by step

1. Local existence:

- Decouple the two equations and solve them separately (existence and uniqueness theorem for ODEs).
- Apply a fixed-point argument (Schauder fixed-point theorem).

Consequence: $P(t)$ is an orthogonal projector and then $Q(t)$ is P^{0}-trace class with $\operatorname{Tr}_{p o}(Q(t))$ constant along the time evolution.

2. Uniqueness:

- Apply Grönwall's lemma.

3. Global existence:

- Prove that the energy is conserved along any solution.
- Show the boundedness of the solution by means of the conservation of energy and Kato's inequality.
Consequence: No finite time blow-up \Longrightarrow the solution is global.

[^0]: ${ }^{1}$ Field operator Ψ, density operator ρ, external potential φ, Sommerfeld constant α.

[^1]: ${ }^{4}$ Orthogonal projection \mathcal{P}_{Λ} of $L^{2}\left(\mathbb{R}^{3}\right)$ onto \mathfrak{H}_{Λ}

