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Introduction

Nonrelativistic: well-known N—body Schrédinger theory
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(M nuclei of mass my and charge z, J electrons of unitary mass and charge).

Atoms with heavy nuclei (Au: Z = 79) — non-negligible relativistic effects (Vejectron ~ 1ZTC7)



The Dirac operator

Relativistic motion of spin-1/2 particles (electrons):
D% = —ica- V + mc?,

where (standard representation in C*)

_ 11@2 0 L 0 agj .
ﬁ_ |: 0 _]]-(CZ:|7 aj = |:O',' O:l’ 1_1?2)3?

with o;, i = 1,2,3, Pauli matrices.

Derivation = energy-momentum relation E2 = m?p? + m?c* + linearisation + first
quantisation.



The spectrum of D°

o (DO) = (foo,fmcz] U [mcz,+oo)

Consequences:
> Negative energy states = virtual electrons — Dirac sea P° = 1(_ ¢ (D°).
O‘(DO)
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» No equivalent of N—body Schrédinger theory involving D° (recall o (—A) = [0, +c0) on
R3).
> Inconsistencies in Dirac(-Hartree)-Fock model: ground state # minimiser of physical
energy.



. = Quantum electrodynamics = matter (charged particles) and light (photons)
interaction (special relativity + QM).

QED = perturbation theory — restricted range of applications.
Nonperturbative physical situations:

> Heavy atoms (strong electric field) + our starting example!

» Neutron stars (strong magnetic field).

—> Bogoliubov-Dirac-Fock model: nonperturbative mean-field approximation of QED.



The Bogoliubov-Dirac-Fock model

No photons QED Hamiltonian in Coulomb gauge (second quantisation):

sz/w* (x)DO\U(x)dx—/ap(x)p(x)dx+(;//dedyl.

1. Compute an energy functional by means of an Hartree-Fock approximation:
gIﬁF ('D) = <QP7 HSDQP%

where Qp is an "infinite Slater determinant" corresponding to an orthogonal projection P
on 2 (R3,C?).

1Field operator W, density operator p, external potential ¢, Sommerfeld constant cv.



The Bogololiubov-Dirac-Fock model

2. Take the (infinite) energy of the free vacuum as a reference:

ggDF (Q) = gIﬁF ('D) - SI%F (PO) :

3. Define P%-trace class? and add an ultraviolet cutoff A > 0 (operator space Hx3) to get
a well defined energy functional:

Epr (Q) = Trpo (DOQ) — a/ pa (x) p(x)dx

//pQ dxdy // dxdy.
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2Trpo (A) = Tr (PPAP®) + Tr ((1 — P°) A(1— P?))
3%p = {Q € &2 (1) ; pq € C} where 5 = {f € L (R3,C*); F C B(0,A)}



The BDF evolution equation

Energy functional £f,r — Euler-Lagrange equation:

» Stationary: [Dg, P] = 0.

» Nonstationary:

-

EP = [Dg, P] | - Von Neumann equation.

with Dg = Pa (DO —ap+apg * ﬂ — a2 |>< o ) Pp* (mean-field operator).
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4Orthogonal projection P of L2 (R3) onto $5



Coupling with Newtonian nuclear dynamics

» M classical nuclei (mMpucleon &2 1836 Melectron): Charges zx, masses my, and centers of
mass X, k=1,..., M.
|-

» Normalised nuclei charge distributions fi such that @, = i (] - —Xk|) * are the

associated potentials.

» Nucleus-electron interactions (Coulomb space C = H™!) + nucleus-nucleus interactions:

M =N =
kZ,'f,' =X k
WQ(t,?l,...jM):aZ/RB Par (K) |k(||2 D) o
i=1
Z //ZII|X_XI Zj (|y Dddy
x =y

1<i<j<M




Coupling with Newtonian nuclear dynamics

» Coupled equations + Cauchy data:

9P (t) = [Dos,,...5m P (£)],
Mm%y (1) = =V Wo (t,%1,...,Xm), k=1,... M,

P(0) =P, P(t)> = P(t), Q(t) = P(t) — P(0) € Ha,

xc(0) =%) e R, &% (0) =V} € R3, k=1,... M,

» Total energy of the system:

M
EM(Q(t),x1(t),...,Xm (1)) = Efpp (Q (1)) + % Z mi|Xk (t)}2
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Main result

Theorem (U.M. 2023)

Let 0 < o < 4/r and f, € L1 (R3) N L? (]R3) NC, k=1,...M. Let P, be an orthogonal
projector such that Q; = P; — P® € Hy and X%, V) € R3, k = 1,... M. Then there exists
a unique global solution

(@1, Xum) € CH([0, +00) , Ha) x (C? ([0, +00) , B?))"
of system (X). Moreover, Q (t) = P (t) — P° is P°-trace class and
trpo (Q (t)) = trpe (Qr)

and
for all t € [0, 4+00).

Don't hesitate to ask me for the !



Thanks for your attention!

This project has received funding from the European Union's Horizon 2020 re-
search and innovation programme under the Marie Skfodowska-Curie grant agreement
N°945332.




Bonus track: proof step by step

1. Local existence:
» Decouple the two equations and solve them separately (existence and uniqueness theorem
for ODEs).
> Apply a fixed-point argument (Schauder fixed-point theorem).
Consequence: P (t) is an orthogonal projector and then @Q (t) is P°-trace class with
Trpo (Q (t)) constant along the time evolution.
2. Uniqueness:
> Apply Gronwall's lemma.
3. Global existence:
> Prove that the energy is conserved along any solution.
» Show the boundedness of the solution by means of the conservation of energy and Kato's
inequality.
Consequence: No finite time blow-up = the solution is global.



