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Introduction

Nonrelativistic: well-known N−body Schrödinger theory
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(M nuclei of mass mk and charge zk , J electrons of unitary mass and charge).

Atoms with heavy nuclei (Au: Z = 79) → non-negligible relativistic effects (velectron ≈ Zc
137 ).



The Dirac operator

Relativistic motion of spin-1/2 particles (electrons):

D0 = −icα · ∇+ βmc2,

where (standard representation in C4)

β =

[
1C2 0
0 −1C2

]
, αi =

[
0 σi

σi 0

]
, i = 1, 2, 3,

with σi , i = 1, 2, 3, Pauli matrices.

Derivation = energy-momentum relation E 2 = m2p2 +m2c4 + linearisation + first
quantisation.



The spectrum of D0

σ
(
D0) = (

−∞,−mc2] ∪ [
mc2,+∞

)
Consequences:
▶ Negative energy states = virtual electrons → Dirac sea P0 = 1(−∞,0)

(
D0

)
.

▶ No equivalent of N−body Schrödinger theory involving D0 (recall σ (−∆) = [0,+∞) on
R3).

▶ Inconsistencies in Dirac(-Hartree)-Fock model: ground state ̸= minimiser of physical
energy.



. . . =⇒ Quantum electrodynamics = matter (charged particles) and light (photons)
interaction (special relativity + QM).

QED = perturbation theory → restricted range of applications.
Nonperturbative physical situations:
▶ Heavy atoms (strong electric field) ← our starting example!
▶ Neutron stars (strong magnetic field).

=⇒ Bogoliubov-Dirac-Fock model: nonperturbative mean-field approximation of QED.



The Bogoliubov-Dirac-Fock model

No photons QED Hamiltonian in Coulomb gauge (second quantisation):

Hφ =

∫
Ψ∗ (x)D0Ψ(x) dx −

∫
φ (x) ρ (x) dx +

α

2

∫ ∫
ρ (x) ρ (y)

|x − y |
dxdy1.

1. Compute an energy functional by means of an Hartree-Fock approximation:

EφHF (P) = ⟨ΩP ,HφΩP⟩,

where ΩP is an "infinite Slater determinant" corresponding to an orthogonal projection P
on L2

(
R3,C2

)
.

1Field operator Ψ, density operator ρ, external potential φ, Sommerfeld constant α.



The Bogololiubov-Dirac-Fock model

2. Take the (infinite) energy of the free vacuum as a reference:

EφBDF (Q) = EφHF (P)− E0
HF

(
P0) .

3. Define P0-trace class2 and add an ultraviolet cutoff Λ > 0 (operator space HΛ
3) to get

a well defined energy functional:

EφBDF (Q) = TrP0
(
D0Q

)
− α
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+
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2TrP0 (A) = Tr
(
P0AP0)+ Tr

((
1 − P0)A (

1 − P0))
3HΛ = {Q ∈ S2 (HΛ) ; ρQ ∈ C} where HΛ = {f ∈ L2 (R3,C4) ; f̂ ⊆ B (0,Λ)}



The BDF evolution equation

Energy functional EφBDF → Euler-Lagrange equation:

▶ Stationary: [DQ ,P] = 0.

▶ Nonstationary: i
d

dt
P = [DQ ,P] ← Von Neumann equation.

with DQ := PΛ

(
D0 − αφ+ αρQ ∗ 1

|·| − αQ(x,y)
|x−y |

)
PΛ

4 (mean-field operator).

4Orthogonal projection PΛ of L2 (R3) onto HΛ



Coupling with Newtonian nuclear dynamics

▶ M classical nuclei (mnucleon ≈ 1836melectron): charges zk , masses mk , and centers of
mass xk , k = 1, . . . ,M.

▶ Normalised nuclei charge distributions fk such that φk = fk (| · −xk |) ∗ | · |−1 are the
associated potentials.

▶ Nucleus-electron interactions (Coulomb space C = Ḣ−1) + nucleus-nucleus interactions:

WQ (t, x1, . . . , xM) = α

M∑
i=1

∫
R3

ρ̂Q(t) (k)zi ̂fi (| · −x i |) (k)
|k |2

dk

− α
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∫ ∫
zi fi (|x − x i |) zj fj (|y − x j |)

|x − y |
dxdy



Coupling with Newtonian nuclear dynamics
▶ Coupled equations + Cauchy data:

i d
dtP (t) = [DQ,x1,...,xM

,P (t)],

mk
d2

dt2 xk (t) = −∇xk
WQ (t, x1, . . . , xM) , k = 1, . . .M,

P (0) = PI , P (t)2 = P (t) , Q (t) = P (t)− P (0) ∈ HΛ,

xk (0) = x0
k ∈ R3, dxk

dt (0) = v0
k ∈ R3, k = 1, . . .M,

(Σ)

▶ Total energy of the system:

E (M) (Q (t) , x1 (t) , . . . , xM (t)) = EφBDF (Q (t)) +
1
2
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Main result

Theorem (U.M. 2023)
Let 0 ≤ α < 4/π and fk ∈ L1

(
R3

)
∩ L2

(
R3

)
∩ C, k = 1, . . .M. Let PI be an orthogonal

projector such that QI = PI − P0 ∈ HΛ and x0
k , v

0
k ∈ R3, k = 1, . . .M. Then there exists

a unique global solution

(Q, x1, . . . , xM) ∈ C 1 ([0,+∞) ,HΛ)×
(
C 2 ([0,+∞) ,R3))M

of system (Σ). Moreover, Q (t) = P (t)− P0 is P0-trace class and

trP0 (Q (t)) = trP0 (QI )

and
E (M) (Q (t) , x1 (t) , . . . , xM (t)) = E (M)

(
QI , x

0
1, . . . , x

0
M

)
,

for all t ∈ [0,+∞).

Don’t hesitate to ask me for the PROOF !
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Bonus track: proof step by step

1. Local existence:
▶ Decouple the two equations and solve them separately (existence and uniqueness theorem

for ODEs).
▶ Apply a fixed-point argument (Schauder fixed-point theorem).

Consequence: P (t) is an orthogonal projector and then Q (t) is P0-trace class with
TrP0 (Q (t)) constant along the time evolution.

2. Uniqueness:
▶ Apply Grönwall’s lemma.

3. Global existence:
▶ Prove that the energy is conserved along any solution.
▶ Show the boundedness of the solution by means of the conservation of energy and Kato’s

inequality.
Consequence: No finite time blow-up =⇒ the solution is global.


