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CI wavefunction

ú Configuration Interaction (CI) wavefunction: linear combination of Slater determinants
{DI} constructed from sets of orthonormal spin orbitals

Φ(r1, · · · , rN) =

Ndet∑

I=1

CI DI (r1, · · · , rN)

ú For large basis sets, full CI computation is not realizable. We improve the truncated
wavefunction by adding a Jastrow factor:

Ψ(r1, · · · , rN) =

Ndet∑

I=1

CI DI (r1, · · · , rN)

︸ ︷︷ ︸
Φ(r1,··· ,rN)

exp [J]

ú goal: optimize the determinantal part {CI} in the presence of Jastrow factor for large Ndet
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Generalized eigenvalue problem

ú The best CI coefficients can be obtained by minimizing the energy. This leads to a
generalized matrix eigenvalue equation:

H C = E S C where





HIK =
〈
DI exp [J]

∣∣∣Ĥ
∣∣∣DK exp [J]

〉

SIK = 〈DI exp [J] |DK exp [J]〉

y Variational problem (H is symmetric & S is positive semidefinite)

y 3N-dimensional integrals

å Quantum Monte Carlo methods
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Generalized eigenvalue problem

ú Variational Monte Carlo (VMC)





HIK ≈
〈
DI e

J

Ψ

Ĥ
(
DK eJ

)

Ψ

〉

Ψ2

SIK ≈
〈
DI e

J

Ψ

DK eJ

Ψ

〉

Ψ2

〈X 〉Ψ2 =
1

Nconfig

Nconfig∑

m=1

X ( Rm︸︷︷︸
drawn with Ψ2

)

y large matrices to sample ∼ N2
det

y statistical noise

å impractical/poor optimization for large Ndet
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Transcorrelated formalism
ú A symmetric pair correlation factor τ is incorporated in the Hamiltonian

ĤTC ≡ e−τ̂ Ĥ e τ̂

ú The similarity-transformed Hamiltonian ĤTC and Ĥ share the same spectra:

Ĥ Ψ = E Ψ ⇐⇒ ĤTC Φ = E Φ where





Ψ ≡ Φ eτ

Φ =
∞∑

i=1

φi

ú For a two-body correlation factor, the effective TC Hamiltonian:

ĤTC = Ĥ +
[
Ĥ, τ̂

]
+

1

2

[[
Ĥ, τ̂

]
, τ̂
]

= Ĥ + K̂12︸︷︷︸
non-Hermitian 2-body

+ L̂123︸︷︷︸
3-body
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Transcorrelated formalism

ú Advantages:

y N-body integrals Ô 3-body integrals

y The Coulomb singularity 1/rij can be explicitly removed Ô improve convergence

y Post-Hartree-Fock (CI, CC, . . . ) methods can be combined with TC approach

ú Numerical difficulties:

y three-body term

y The TC Hamiltonian is non-Hermitian

ú We propose an iterative scheme to overcome these difficulties
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Diagonal dressing

We start with a CI WF Φ(0) =
∑Ndet

I=1 C
(0)
I DI , and a fixed Jastrow factor exp [τ ]

ú Goal: optimize the coefficients by solving the TC eigen-problem in the {DI} basis:

ĤTC Φ = ETC Φ⇒
Ndet∑

K=1

〈
DI

∣∣∣ ĤTC − Ĥ + Ĥ
∣∣∣DK

〉
C

(i)
K = ETC C

(i)
I
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dressing elements


C

(i)
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ú We have to build the diagonal dressing matrix ∆(i−1):

∆
(i−1)
IK =





1

C
(i−1)
I

〈
DI

∣∣∣ ĤTC − Ĥ
∣∣∣Φ(i−1)

〉
if I = K

0 otherwise
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Column dressing

ú It is more stable to dress with the elements

Γ
(i−1)
IL =

1

C
(i−1)
L

〈
DI

∣∣∣ ĤTC − Ĥ
∣∣∣Φ(i−1)

〉


x x · · · x




row L

where L corresponds to the largest coefficients C
(i−1)
L
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∆
(i−1)
LI = ∆

(i−1)
IL = Γ

(i−1)
IL

∆
(i−1)
KI = ∆

(i−1)
IK = 0 for K 6= L

ú An extra term is introduced in the diagonal element to cancel the double counting:

∆
(i−1)
LL = 2 Γ

(i−1)
LL − 1

C
(i−1)
L

Ndet∑

K=1

Γ
(i−1)
KL C

(i−1)
K
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Iterative dressing algorithm

À choose a CI WF: Φ(0) =
∑Ndet

I=1 C
(0)
I DI & a Jastrow factor exp(τ)

Á with VMC, evaluate:

ø the dressing elements
〈
DI

∣∣∣ĤTC − Ĥ
∣∣∣Φ(i−1)

〉

ø the variational energy E (i−1) =

〈
Φ(i−1)eτ

∣∣∣ Ĥ
∣∣∣ eτΦ(i−1)

〉

〈
Φ(i−1)eτ

∣∣ eτΦ(i−1)
〉

Â dress the Hamiltonian matrix H with the symmetric matrix ∆(i−1)

Ã apply Davidson to obtain the new ground state Φ(i) and E
(i)
TC

Ä go back to Á
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∣∣∣Φ(i−1)

〉

ø the variational energy E (i−1) =

〈
Φ(i−1)eτ

∣∣∣ Ĥ
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Ã apply Davidson to obtain the new ground state Φ(i) and E
(i)
TC

Ä go back to Á

N all steps are deterministic except Á

N the TC energy ETC is not variational. per contra the VMC energy E is
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Iterative dressing algorithm: advantages

ú after few iterations (∼ 2− 4), we converge to the solution

ú we need to sample only Ndet elements instead of N2
det

ú handle the non-Hermiticity of the TC eigenproblem thanks to the symmetric dressing

ú VMC calculation allows to handle three-body integrals and evaluate a variational energy
(instead of the TC energy)

ú reduced statistical errors:
〈
DI

∣∣∣ ĤTC − Ĥ
∣∣∣DK

〉
=
〈
DI e

−τ
∣∣∣ T̂ + V̂

∣∣∣ eτDK

〉
−
〈
DI

∣∣∣ T̂ + V̂
∣∣∣DK

〉

=
〈
DI e

−τ
∣∣∣ T̂
∣∣∣ eτDK

〉
−
〈
DI

∣∣∣ T̂
∣∣∣DK

〉

for large distances exp (τ) ∼ exp (−τ) ∼ 1 ⇒ large fluctuations occur only when electrons are

close, which has a relatively low probability
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Proof of concept

ú Jastrow inspired by Range-Separated DFT1: τµ =
∑

i<j

[
rij (1−erf(µrij))

2 −
exp

[
−(µrij)

2
]

2
√
πµ

]

Benchmark: Be (cc-pcvdz)
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1Emmanuel Giner, J. Chem. Phys., 154, 2021
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Application: H2O (cc-pvdz ecp bfd): Ndet ∼ 71 000

ú A simple Jastrow factor τ =
∑N

i<j

a rij
1 + b rij

−∑M
A=1

∑N
i=1

(
αA riA

1 + αA riA

)2

CI energy: EΦ = −17.16096 (no-Jastrow)

-17.24

-17.236

-17.232

-17.228

-17.224

-17.22

-17.216

-17.212

-17.208

 0  1  2  3
iteration i

VMC energy of Ψ(i)

E (3) − E (0) ≈ 27mEh
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DI |ĤTC |Φ
〉

Ψ2

〈error〉 ≈ 8 〈error〉
Jan 13, 2021 11 / 15



Table of contents

1 Motivation

2 Variational scheme

3 Transcorrelated approach

4 Iterative symmetric dressing

5 Reduce statistical noise

6 Conclusion



Modified dressing elements

ú For an arbitrary choice of Jastrow factor (arbitrary ĤTC), we have:

〈
DI

∣∣∣ ĤTC

∣∣∣DJ

〉
=
〈
DI

∣∣∣ ĤTC − Ĥµ + Ĥµ − Ĥ + Ĥ
∣∣∣DJ

〉

=
〈
DI

∣∣∣ Ĥ
∣∣∣DJ

〉

︸ ︷︷ ︸
matrix to be dressed

+
〈
DI

∣∣∣ Ĥµ − Ĥ
∣∣∣DJ

〉

︸ ︷︷ ︸
∼ analyitc elements

+
〈
DI

∣∣∣ ĤTC − Ĥµ

∣∣∣DJ

〉

︸ ︷︷ ︸
VMC elements

ú New dressing elements:

〈
DI

∣∣∣ ĤTC − Ĥ
∣∣∣Φ
〉
→

〈
DI

∣∣∣ ĤTC − Ĥµ

∣∣∣Φ
〉

+
〈
DI

∣∣∣ Ĥµ − Ĥ
∣∣∣Φ
〉

ú Local energies with Jastrow factor are more correlated:

∣∣∣∣∣
ĤTC Φ

Φ
− Ĥµ Φ

Φ

∣∣∣∣∣ <
∣∣∣∣∣
ĤTC Φ

Φ
− Ĥ Φ

Φ

∣∣∣∣∣ ⇒ reduced statistical errors
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illustration: Be (cc-pcvdz)
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1-body Jastrow

ú we add a 1-body Jastrow to avoid unfavorable effect of the two-body Jastrow factor τµ that
changes the charge density:

τmu → τmu −
∑

A,i tanh (βA riA)
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electron-nucleus distance (r)
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1-
bo

dy
 Ja

st
ro

w

( r
1 + r)2

tanh( r)
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Conclusion

ú iterative symmetric dressing within TC approach:

y number of elements to sample in VMC: N2
det → Ndet

y addresses the non-Hermiticity of the TC Hamiltonian & three-body terms

y fast convergence (∼ 2− 3 iterations)

ú employ Ĥµ in the dressing elements calculation allows to reduce the statistical noise

y we can improve the results by adding 1-body term to τµ

ú ongoing work:

y application for larger CI expansion (Ndet ∼ 106 − 107)

y develop a compact representation for dressing vector
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