

Iterative CI wavefunction optimization using a similarity-transformed Hamiltonian and VMC

 ${\sf Abdallah\ Ammar}^1$, Emmanuel Giner 2 & Anthony Scemama 1

¹LCPQ, IRSAMC, UPS/CNRS, Toulouse, France ²LCT, Sorbonne Université/CNRS, Paris, France

1 [Motivation](#page-1-0)

- [Variational scheme](#page-3-0)
- 3 [Transcorrelated approach](#page-6-0)
- [Iterative symmetric dressing](#page-9-0)
- **6** [Reduce statistical noise](#page-26-0)
-

CI wavefunction

→ Configuration Interaction (CI) wavefunction: linear combination of Slater determinants ${D_l}$ constructed from sets of orthonormal spin orbitals

$$
\Phi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=\sum_{l=1}^{N_{\text{det}}}C_l\ D_l(\mathbf{r}_1,\cdots,\mathbf{r}_N)
$$

 \rightarrow For large basis sets, full CI computation is not realizable. We improve the truncated wavefunction by adding a Jastrow factor:

$$
\Psi(\mathbf{r}_1,\dots,\mathbf{r}_N)=\underbrace{\sum_{l=1}^{N_{\text{det}}}\mathcal{C}_l\ D_l(\mathbf{r}_1,\dots,\mathbf{r}_N)}_{\Phi(\mathbf{r}_1,\dots,\mathbf{r}_N)}\exp[J]
$$

 \rightarrow goal: optimize the determinantal part $\{C_I\}$ in the presence of Jastrow factor for large N_{det}

[Motivation](#page-1-0)

2 [Variational scheme](#page-3-0)

3 [Transcorrelated approach](#page-6-0)

[Iterative symmetric dressing](#page-9-0)

6 [Reduce statistical noise](#page-26-0)

Generalized eigenvalue problem

 \rightarrow The best CI coefficients can be obtained by minimizing the energy. This leads to a generalized matrix eigenvalue equation:

$$
\mathsf{HC} = \mathsf{ESC} \qquad \text{where } \begin{cases} \mathsf{H}_{\mathit{IK}} = \left\langle D_{\mathit{I}} \exp[\mathit{J}] \middle| \widehat{\mathit{H}} \middle| D_{\mathit{K}} \exp[\mathit{J}] \right\rangle \\ \mathsf{S}_{\mathit{IK}} = \left\langle D_{\mathit{I}} \exp[\mathit{J}] \middle| D_{\mathit{K}} \exp[\mathit{J}] \right\rangle \end{cases}
$$

I Variational problem (H is symmetric $\&$ S is positive semidefinite)

■ 3N-dimensional integrals

Generalized eigenvalue problem

➺ Variational Monte Carlo (VMC)

$$
\left\{\frac{\mathbf{H}_{IK} \approx \left\langle \frac{D_I e^J}{\Psi} \frac{\hat{H} (D_K e^J)}{\Psi} \right\rangle_{\Psi^2}}{\mathbf{S}_{IK} \approx \left\langle \frac{D_I e^J}{\Psi} \frac{D_K e^J}{\Psi} \right\rangle_{\Psi^2}\right.
$$

$$
\langle X \rangle_{\Psi^2} = \frac{1}{N_{\text{config}}} \sum_{m=1}^{N_{\text{config}}} X(\underbrace{\mathbf{R}_m}_{\text{drawn with }\Psi^2})
$$

∎ large matrices to sample $\sim \mathcal{N}_{\text{det}}^2$

I statistical noise

 \rightarrow impractical/poor optimization for large N_{det}

[Motivation](#page-1-0)

- [Variational scheme](#page-3-0)
- 3 [Transcorrelated approach](#page-6-0)
- [Iterative symmetric dressing](#page-9-0)
- 5 [Reduce statistical noise](#page-26-0)
-

Transcorrelated formalism

 \rightarrow A symmetric pair correlation factor τ is incorporated in the Hamiltonian

$$
\widehat{H}_{\mathsf{TC}} \equiv e^{-\hat{\tau}} \,\widehat{H} \, e^{\hat{\tau}}
$$

 \rightarrow The similarity-transformed Hamiltonian $\widehat H_{\mathsf{TC}}$ and $\widehat H$ share the same spectra:

$$
\widehat{H}\Psi = E\Psi \iff \boxed{\widehat{H}_{TC}\Phi = E\Phi} \qquad \text{where } \begin{cases} \Psi \equiv \Phi \, e^{\tau} \\ \Phi = \sum_{i=1}^{\infty} \phi_i \end{cases}
$$

→ For a two-body correlation factor, the effective TC Hamiltonian:

$$
\hat{H}_{\mathsf{TC}} = \hat{H} + \left[\hat{H}, \hat{\tau}\right] + \frac{1}{2} \left[\left[\hat{H}, \hat{\tau}\right], \hat{\tau}\right]
$$

$$
= \hat{H} + \underbrace{\hat{K}_{12}}_{\text{non-Hermitian 2-body}} + \underbrace{\hat{L}_{123}}_{\text{3-body}}
$$

Transcorrelated formalism

- **→ Advantages:**
	- \blacksquare N-body integrals \rightarrow 3-body integrals
	- **Ⅰ** The Coulomb singularity $1/r_{ii}$ can be explicitly removed → improve convergence
	- ❙ Post-Hartree-Fock (CI, CC, . . .) methods can be combined with TC approach
- **→ Numerical difficulties:**
	- I three-body term
	- **I** The TC Hamiltonian is non-Hermitian
- \rightarrow We propose an iterative scheme to overcome these difficulties

[Motivation](#page-1-0)

- [Variational scheme](#page-3-0)
- 3 [Transcorrelated approach](#page-6-0)
- 4 [Iterative symmetric dressing](#page-9-0)
- 5 [Reduce statistical noise](#page-26-0)
-

Diagonal dressing

We start with a CI WF $\Phi^{(0)} = \sum_{I=1}^{N_{\rm det}} \mathcal{C}^{(0)}_I \, D_I$, and a fixed Jastrow factor $\exp{[\tau]}$

 \rightarrow Goal: optimize the coefficients by solving the TC eigen-problem in the $\{D_l\}$ basis:

$$
\widehat{H}_{\mathsf{TC}} \Phi = E_{\mathsf{TC}} \Phi \Rightarrow \sum_{K=1}^{N_{\text{det}}} \left\langle D_I \left| \widehat{H}_{\mathsf{TC}} - \widehat{H} + \widehat{H} \right| D_K \right\rangle \ C_K^{(i)} = E_{\mathsf{TC}} C_I^{(i)}
$$

Diagonal dressing

We start with a CI WF $\Phi^{(0)} = \sum_{I=1}^{N_{\rm det}} \mathcal{C}^{(0)}_I \, D_I$, and a fixed Jastrow factor $\exp{[\tau]}$

 \rightarrow Goal: optimize the coefficients by solving the TC eigen-problem in the $\{D_l\}$ basis:

$$
\hat{H}_{TC} \Phi = E_{TC} \Phi \Rightarrow \sum_{K=1}^{N_{\text{det}}} \left\langle D_I \left| \hat{H}_{TC} - \hat{H} + \hat{H} \right| D_K \right\rangle C_K^{(i)} = E_{TC} C_I^{(i)}
$$
\n
$$
\sum_{K \neq I} \mathbf{H}_{IK} C_K^{(i)} + \left(\mathbf{H}_{II} + \frac{1}{C_I^{(i-1)}} \left\langle D_I \left| \hat{H}_{TC} - \hat{H} \right| \Phi^{(i-1)} \right\rangle \right) C_I^{(i)} \approx E_{TC} C_I^{(i)}
$$
\n
$$
\left(\begin{array}{c} X \\ \vdots \\ X \end{array}\right)
$$

Diagonal dressing

We start with a CI WF $\Phi^{(0)} = \sum_{I=1}^{N_{\rm det}} \mathcal{C}^{(0)}_I \, D_I$, and a fixed Jastrow factor $\exp{[\tau]}$

 \rightarrow Goal: optimize the coefficients by solving the TC eigen-problem in the $\{D_l\}$ basis:

$$
\hat{H}_{TC} \Phi = E_{TC} \Phi \Rightarrow \sum_{K=1}^{N_{\text{det}}} \left\langle D_I \left| \hat{H}_{TC} - \hat{H} + \hat{H} \right| D_K \right\rangle C_K^{(i)} = E_{TC} C_I^{(i)}
$$
\n
$$
\sum_{K \neq I} \mathbf{H}_{IK} C_K^{(i)} + \left(\mathbf{H}_{II} + \frac{1}{C_I^{(i-1)}} \left\langle D_I \left| \hat{H}_{TC} - \hat{H} \right| \Phi^{(i-1)} \right\rangle \right) C_I^{(i)} \approx E_{TC} C_I^{(i)}
$$
\n
$$
\left(\begin{array}{c} X \\ \vdots \\ X \end{array}\right)
$$

 \rightarrow We have to build the diagonal dressing matrix $\Delta^{(i-1)}$:

$$
\Delta_{lK}^{(i-1)} = \begin{cases} \frac{1}{C_l^{(i-1)}} \left\langle D_l \middle| \hat{H}_{\text{TC}} - \hat{H} \middle| \Phi^{(i-1)} \right\rangle & \text{if } l = K \\ 0 & \text{otherwise} \end{cases}
$$

Column dressing

 \rightarrow It is more stable to dress with the elements

$$
\Gamma_{IL}^{(i-1)} = \frac{1}{C_L^{(i-1)}} \left\langle D_I \left| \hat{H}_{TC} - \hat{H} \right| \Phi^{(i-1)} \right\rangle
$$

where L corresponds to the largest coefficients $\mathcal{C}_l^{(i-1)}$ L

Column dressing

 \rightarrow It is more stable to dress with the elements

$$
\Gamma_{IL}^{(i-1)} = \frac{1}{C_L^{(i-1)}} \left\langle D_I \left| \hat{H}_{TC} - \hat{H} \right| \Phi^{(i-1)} \right\rangle
$$

 $\sqrt{ }$ \vert x $x \times x \cdots x$ x \setminus \int row \int

where L corresponds to the largest coefficients $\mathcal{C}_l^{(i-1)}$ L

 \rightarrow The dressing matrix $\Delta^{(i-1)}$ is chosen to be **symmetric** by construction:

$$
\begin{aligned} \n\Delta_{LI}^{(i-1)} &= \Delta_{IL}^{(i-1)} = \Gamma_{IL}^{(i-1)} \\ \n\Delta_{KI}^{(i-1)} &= \Delta_{IK}^{(i-1)} = 0 \quad \text{for } K \neq L \n\end{aligned}
$$

Column dressing

 \rightarrow It is more stable to dress with the elements

$$
\Gamma_{IL}^{(i-1)} = \frac{1}{C_L^{(i-1)}} \left\langle D_I \left| \hat{H}_{TC} - \hat{H} \right| \Phi^{(i-1)} \right\rangle
$$

 $\sqrt{ }$ \vert x $x \times x \cdots x$ x \setminus \int row \int

where L corresponds to the largest coefficients $\mathcal{C}_l^{(i-1)}$ L

 \rightarrow The dressing matrix $\Delta^{(i-1)}$ is chosen to be symmetric by construction:

$$
\begin{aligned} \n\Delta_{LI}^{(i-1)} &= \Delta_{IL}^{(i-1)} = \Gamma_{IL}^{(i-1)} \\ \n\Delta_{KI}^{(i-1)} &= \Delta_{IK}^{(i-1)} = 0 \quad \text{for } K \neq L \n\end{aligned}
$$

 \rightarrow An extra term is introduced in the diagonal element to cancel the double counting:

$$
\pmb{\Delta}^{(i-1)}_{LL} = 2 \, \Gamma^{(i-1)}_{LL} - \frac{1}{C^{(i-1)}_{L}} \sum_{K=1}^{N_{\text{det}}} \Gamma^{(i-1)}_{KL} C^{(i-1)}_{K}
$$

Iterative dressing algorithm

 $\textcircled{1}$ choose a CI WF: $\Phi^{(0)} = \sum_{I=1}^{N_{\rm det}} \mathcal{C}^{(0)}_I \mathcal{D}_I$ & a Jastrow factor $\exp(\tau)$ ➁ with VMC, evaluate:

$$
\Rightarrow \text{ the discussing elements } \left\langle D_l \middle| \widehat{H}_{\mathsf{TC}} - \widehat{H} \middle| \Phi^{(i-1)} \right\rangle
$$
\n
$$
\Rightarrow \text{ the variational energy } E^{(i-1)} = \frac{\left\langle \Phi^{(i-1)} e^{\tau} \middle| \widehat{H} \middle| e^{\tau} \Phi^{(i-1)} \right\rangle}{\left\langle \Phi^{(i-1)} e^{\tau} \middle| e^{\tau} \Phi^{(i-1)} \right\rangle}
$$

③ dress the Hamiltonian matrix **H** with the symmetric matrix $\mathbf{\Delta}^{(i-1)}$ \circledast apply Davidson to obtain the new ground state $\Phi^{(i)}$ and $E^{(i)}_{\mathsf{T}\mathsf{C}}$ TC ➄ go back to ➁

Iterative dressing algorithm

 $\textcircled{1}$ choose a CI WF: $\Phi^{(0)} = \sum_{I=1}^{N_{\rm det}} \mathcal{C}^{(0)}_I \mathcal{D}_I$ & a Jastrow factor $\exp(\tau)$ ➁ with VMC, evaluate:

$$
\Rightarrow \text{ the dressing elements } \left\langle D_l \middle| \widehat{H}_{\mathsf{TC}} - \widehat{H} \middle| \Phi^{(i-1)} \right\rangle
$$
\n
$$
\Rightarrow \text{ the variational energy } E^{(i-1)} = \frac{\left\langle \Phi^{(i-1)} e^{\tau} \middle| \widehat{H} \middle| e^{\tau} \Phi^{(i-1)} \right\rangle}{\left\langle \Phi^{(i-1)} e^{\tau} \middle| e^{\tau} \Phi^{(i-1)} \right\rangle}
$$

③ dress the Hamiltonian matrix **H** with the symmetric matrix $\mathbf{\Delta}^{(i-1)}$ \circledast apply Davidson to obtain the new ground state $\Phi^{(i)}$ and $E^{(i)}_{\mathsf{T}\mathsf{C}}$ TC ➄ go back to ➁

 $\frac{\ast}{\mathbb{R}}$ all steps are deterministic except 2

 \star the TC energy E_{TC} is not variational. per contra the VMC energy E is

\rightarrow after few iterations (\sim 2 – 4), we converge to the solution

 \rightarrow we need to sample only \mathcal{N}_{det} elements instead of $\mathcal{N}_{\text{det}}^2$

 \rightarrow handle the **non-Hermiticity** of the TC eigenproblem thanks to the **symmetric dressing**

 \rightarrow VMC calculation allows to handle three-body integrals and evaluate a variational energy (instead of the TC energy)

→ reduced statistical errors:

$$
\left\langle D_{I} \left| \hat{H}_{\mathsf{TC}} - \hat{H} \right| D_{K} \right\rangle = \left\langle D_{I} e^{-\tau} \left| \hat{T} + \hat{V} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} + \hat{V} \right| D_{K} \right\rangle
$$

$$
= \left\langle D_{I} e^{-\tau} \left| \hat{T} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} \right| D_{K} \right\rangle
$$

- \rightarrow after few iterations (\sim 2 4), we converge to the solution
- \rightarrow we need to sample only \mathcal{N}_det elements instead of $\mathcal{N}_\mathrm{det}^2$
- \rightarrow handle the **non-Hermiticity** of the TC eigenproblem thanks to the **symmetric dressing**
- \rightarrow VMC calculation allows to handle three-body integrals and evaluate a variational energy (instead of the TC energy)
- **→** reduced statistical errors:

$$
\left\langle D_{I} \left| \hat{H}_{\mathsf{TC}} - \hat{H} \right| D_{K} \right\rangle = \left\langle D_{I} e^{-\tau} \left| \hat{T} + \hat{V} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} + \hat{V} \right| D_{K} \right\rangle
$$

$$
= \left\langle D_{I} e^{-\tau} \left| \hat{T} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} \right| D_{K} \right\rangle
$$

- \rightarrow after few iterations (\sim 2 4), we converge to the solution
- \rightarrow we need to sample only \mathcal{N}_det elements instead of $\mathcal{N}_\mathrm{det}^2$
- \rightarrow handle the non-Hermiticity of the TC eigenproblem thanks to the symmetric dressing

 \rightarrow VMC calculation allows to handle three-body integrals and evaluate a variational energy (instead of the TC energy)

➺ reduced statistical errors:

$$
\left\langle D_{I} \left| \hat{H}_{\mathsf{TC}} - \hat{H} \right| D_{K} \right\rangle = \left\langle D_{I} e^{-\tau} \left| \hat{T} + \hat{V} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} + \hat{V} \right| D_{K} \right\rangle
$$

$$
= \left\langle D_{I} e^{-\tau} \left| \hat{T} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} \right| D_{K} \right\rangle
$$

- \rightarrow after few iterations (\sim 2 4), we converge to the solution
- \rightarrow we need to sample only \mathcal{N}_det elements instead of $\mathcal{N}_\mathrm{det}^2$
- \rightarrow handle the non-Hermiticity of the TC eigenproblem thanks to the symmetric dressing
- \rightarrow VMC calculation allows to handle three-body integrals and evaluate a variational energy (instead of the TC energy)
- ➺ reduced statistical errors:

$$
\left\langle D_{l} \left| \hat{H}_{\mathsf{TC}} - \hat{H} \right| D_{K} \right\rangle = \left\langle D_{l} e^{-\tau} \left| \hat{T} + \hat{V} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{l} \left| \hat{T} + \hat{V} \right| D_{K} \right\rangle
$$

$$
= \left\langle D_{l} e^{-\tau} \left| \hat{T} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{l} \left| \hat{T} \right| D_{K} \right\rangle
$$

- \rightarrow after few iterations (\sim 2 4), we converge to the solution
- \rightarrow we need to sample only \mathcal{N}_det elements instead of $\mathcal{N}_\mathrm{det}^2$
- \rightarrow handle the non-Hermiticity of the TC eigenproblem thanks to the symmetric dressing
- \rightarrow VMC calculation allows to handle three-body integrals and evaluate a variational energy (instead of the TC energy)
- **→** reduced statistical errors:

$$
\left\langle D_{I} \left| \hat{H}_{TC} - \hat{H} \right| D_{K} \right\rangle = \left\langle D_{I} e^{-\tau} \left| \hat{T} + \hat{V} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} + \hat{V} \right| D_{K} \right\rangle
$$

$$
= \left\langle D_{I} e^{-\tau} \left| \hat{T} \right| e^{\tau} D_{K} \right\rangle - \left\langle D_{I} \left| \hat{T} \right| D_{K} \right\rangle
$$

Proof of concept

 \rightarrow Jastrow inspired by Range-Separated DFT 1 : $\tau_{\mu} = \sum_{i < j}$ $\int r_{ij} (1 - erf(\mu r_{ij}))$ $\frac{1}{2}$ – $\exp\left[-\left(\mu r_{ij}\right)^2\right]$ i $\left[-\left(\mu r_{ij}\right)^2\right]\over 2\sqrt{\pi}\mu$ Benchmark: Be (cc-pcvdz)

 1 Emmanuel Giner, J. Chem. Phys., 154, 2021

Application: H₂O (cc-pvdz_ecp_bfd): $N_{\text{det}} \sim 71\,000$

$$
\Rightarrow \text{ A simple Jastrow factor } \tau = \sum_{i < j}^{N} \frac{a \, r_{ij}}{1 + b \, r_{ij}} - \sum_{A=1}^{M} \sum_{i=1}^{N} \left(\frac{\alpha_A \, r_{iA}}{1 + \alpha_A \, r_{iA}} \right)^2
$$

CI energy: $E_{\Phi} = -17.16096$ (no-Jastrow)

Application: H₂O (cc-pvdz_ecp_bfd): $N_{\text{det}} \sim 71\,000$

$$
\Rightarrow \text{ A simple Jastrow factor } \tau = \sum_{i < j}^{N} \frac{a \, r_{ij}}{1 + b \, r_{ij}} - \sum_{A=1}^{M} \sum_{i=1}^{N} \left(\frac{\alpha_A \, r_{iA}}{1 + \alpha_A \, r_{iA}} \right)^2
$$

CI energy: $E_{\Phi} = -17.16096$ (no-Jastrow)

[Motivation](#page-1-0)

- [Variational scheme](#page-3-0)
- 3 [Transcorrelated approach](#page-6-0)
- [Iterative symmetric dressing](#page-9-0)
- 5 [Reduce statistical noise](#page-26-0)
-

Modified dressing elements

 \rightarrow For an arbitrary choice of Jastrow factor (arbitrary \hat{H}_{TC}), we have:

$$
\left\langle D_{I} \left| \hat{H}_{TC} \right| D_{J} \right\rangle = \left\langle D_{I} \left| \hat{H}_{TC} - \hat{H}_{\mu} + \hat{H}_{\mu} - \hat{H} + \hat{H} \right| D_{J} \right\rangle
$$

=
$$
\underbrace{\left\langle D_{I} \left| \hat{H} \right| D_{J} \right\rangle}_{\text{matrix to be dressed}} + \underbrace{\left\langle D_{I} \left| \hat{H}_{\mu} - \hat{H} \right| D_{J} \right\rangle}_{\sim \text{analytic elements}} + \underbrace{\left\langle D_{I} \left| \hat{H}_{TC} - \hat{H}_{\mu} \right| D_{J} \right\rangle}_{\text{VMC elements}}
$$

→ New dressing elements:

$$
\left\langle D_I \left| \hat{H}_{TC} - \hat{H} \right| \Phi \right\rangle \rightarrow \boxed{\left\langle D_I \left| \hat{H}_{TC} - \hat{H}_{\mu} \right| \Phi \right\rangle} + \left\langle D_I \left| \hat{H}_{\mu} - \hat{H} \right| \Phi \right\rangle
$$

→ Local energies with Jastrow factor are more correlated:

$$
\left|\frac{\widehat{H}_{\mathsf{TC}}\,\Phi}{\Phi} - \frac{\widehat{H}_{\mu}\,\Phi}{\Phi}\right| < \left|\frac{\widehat{H}_{\mathsf{TC}}\,\Phi}{\Phi} - \frac{\widehat{H}\,\Phi}{\Phi}\right|
$$

⇒ reduced statistical errors

illustration: Be (cc-pcvdz)

$$
\sum \tau_{TC} = \sum_{i < j} \frac{a r_{ij}}{1 + b r_{ij}} - \sum_{A,i} \left(\frac{\alpha_A r_{iA}}{1 + \alpha_A r_{iA}} \right)^2 \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iA}}{1 + \alpha_A r_{iA}} \right)}_{\text{total}} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{total}} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{total}} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant } D_1} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant } D_1} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant } D_1} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant } D_1} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant } D_1} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant } D_1} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant } D_1} + \underbrace{\sum_{u \text{ odd}}^{10^{-3}} \frac{1}{2} \left(\frac{\alpha_A r_{iB}}{1 + \alpha_A r_{iB}} \right)}_{\text{determinant }
$$

1-body Jastrow

 \rightarrow we add a 1-body Jastrow to avoid unfavorable effect of the two-body Jastrow factor τ_{μ} that changes the charge density:

 $\tau_{\textit{mu}} \rightarrow \tau_{\textit{mu}} - \sum_{A,i} \text{tanh} \left(\beta_A \, r_{iA} \right)$

1-body Jastrow

 \rightarrow we add a 1-body Jastrow to avoid unfavorable effect of the two-body Jastrow factor τ_{μ} that changes the charge density:

 $\tau_{\textit{mu}} \rightarrow \tau_{\textit{mu}} - \sum_{A,i} \text{tanh} \left(\beta_A \, r_{iA} \right)$ **0 20 40 60 80 100 electron-nucleus distance** (r) **0.0 0.2 0.4 0.6 0.8 1.0 1-body Jastrow** $\left(\frac{\alpha r}{1 + \alpha r}\right)^2$ tanh(β r)

Conclusion

 \rightarrow iterative symmetric dressing within TC approach:

I number of elements to sample in VMC: $N_{\rm det}^2 \rightarrow N_{\rm det}$

I addresses the non-Hermiticity of the TC Hamiltonian & three-body terms **I** fast convergence (\sim 2 − 3 iterations)

 \rightarrow employ \hat{H}_{μ} in the dressing elements calculation allows to reduce the statistical noise **I** we can improve the results by adding 1-body term to τ_u

 \rightarrow ongoing work:

∎application for larger CI expansion $(N_{\rm det} \sim 10^6-10^7)$

I develop a compact representation for dressing vector

Acknowledgments

Anthony Scemama & Emmanuel Giner

This project has received funding from the European Unions Horizon 2020 - Research and Innovation program - under grant agreement no. 952165.

Thank you for your attention

