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Monte Carlo methods adapted to statistical physics or quantum
physics.

Quantum physics or statistical physics

R ∈ Ω is a configuration (time trajectory in quantum physics
or set of positions (and sometimes velocities) in statistical
physics.

Physical properties from logarithmic derivatives of integrals.

Z =

∫

dReS(R)
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Examples of perturbations

Statistical physics S = βH (the Hamiltonian).

〈H 〉 =

∫
He−βHdR
∫
e−βH dR
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Examples of perturbations

Statistical physics S = βH (the Hamiltonian).

〈H 〉 =

∫
He−βHdR
∫
e−βH dR

= −
1

β

d lnZ

dβ

Perturbation, addition of a magnetic field B .

H (R) → H (R) + B

∫

M (R)

︸ ︷︷ ︸

perturbation

where M is the spin.
First derivative with respect to B mean magnetization, second
derivative susceptibility

Analogous formulas in quantum physics.
Roland Assaraf1 , Hilaire Chevreau Towards computing efficently cumulants in Monte Carlo, exchange



Introduction

Extensivity problem for the fluctuations to compute a covariance

Higher order cumulants and the sign problem

Lowering the scaling of the fluctuations to compute a covariance

Conclusion

Second order cumulants or covariances

cov(U,V) = E(UV)− E(U )E(V )
︸ ︷︷ ︸

0 if centered
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Second order cumulants or covariances

cov(U,V) = E(UV)− E(U )E(V )
︸ ︷︷ ︸

0 if centered

Size extensivity

A large system can be usually approximated as a set of
independent fragments.

U ≃
∑

m

Um

V ≃
∑

m

Vm

m 6= n =⇒ Um independent of Un and Vn , Vm ind. of Vn .
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First order derivative

E(U ) =
∑

m E(Um) = O(N )
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First order derivative

E(U ) =
∑

m E(Um) = O(N ) V (U ) =
∑

m V (Um) = O(N ).
No signal / noise problem.
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First order derivative

E(U ) =
∑

m E(Um) = O(N ) V (U ) =
∑

m V (Um) = O(N ).
No signal / noise problem.

Second order derivative

cov(U,V) ≃
∑

cov(Um,Vm) is extensive.

UV =
∑

mn

UmVn
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First order derivative

E(U ) =
∑

m E(Um) = O(N ) V (U ) =
∑

m V (Um) = O(N ).
No signal / noise problem.

Second order derivative

cov(U,V) ≃
∑

cov(Um,Vm) is extensive.

UV =
∑

mn

UmVn =
∑

m

UmVm

︸ ︷︷ ︸

O(N )terms

+
∑

m 6=n

UmVn

︸ ︷︷ ︸

O(N 2) terms

.O(N 2) terms not contributing to the expectation value but to the
variance.
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First order derivative

E(U ) =
∑

m E(Um) = O(N ) V (U ) =
∑

m V (Um) = O(N ).
No signal / noise problem.

Second order derivative

cov(U,V) ≃
∑

cov(Um,Vm) is extensive.

UV =
∑

mn

UmVn =
∑

m

UmVm

︸ ︷︷ ︸

O(N )terms

+
∑

m 6=n

UmVn

︸ ︷︷ ︸

O(N 2) terms

.O(N 2) terms not contributing to the expectation value but to the
variance.

Indeed m 6= n, cov(Um,Vn) = 0 but V (UmVn) = V (Um)V (Vn).
The variance of the estimator grows as O(N 2) while the

expectation value grows as O(N )
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The scaling of the variance is even larger for higher order
cumulants.
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The scaling of the variance is even larger for higher order
cumulants.
Finite perturbation S → S + P

ZP =

∫

e−S−P =

∫
e−Se−P

∫
e−S

Z
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The scaling of the variance is even larger for higher order
cumulants.
Finite perturbation S → S + P

ZP =

∫

e−S−P =

∫
e−Se−P

∫
e−S

Z = E(e−P )Z (1)

Example, the sign problem !

Looking at a fermionic problem as perturbation of a bosonic
problem.
P = iπ

∫
n (where n ∈ (0, 1)).

ln(ZP ) = ln(Z ) + ln(E(e−P ))
︸ ︷︷ ︸

Infinite sum of cumulants

(2)

Noise (exponential) / signal (O(N )) growing exponentially with
system size, the so-called sign problem.
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The size extensivity problem (cumulant problem or the sign
problem) is formulated in the limit of independent fragments.

But in the limit of (explicitely) independent fragments there should
not a be size extensive problem or a sign problem !
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The size extensivity problem (cumulant problem or the sign
problem) is formulated in the limit of independent fragments.

But in the limit of (explicitely) independent fragments there should
not a be size extensive problem or a sign problem !

If each fragment can be treated independently, size extensivity of
the fluctuations !
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The size extensivity problem (cumulant problem or the sign
problem) is formulated in the limit of independent fragments.

But in the limit of (explicitely) independent fragments there should
not a be size extensive problem or a sign problem !

If each fragment can be treated independently, size extensivity of
the fluctuations !

How to exploit (approximate) independence to compute cumulants
with size extensive fluctuations ?
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In the litterature

Dynamical sign problem solved

Uses the Markovian property in the time.

Story for Xt>0 depends on X0 but not of Xt<0. This high degree of

independence is used in the Inchworm algorithm.

No such strong explicit independence for particles but partial solutions.

Cluster algorithms

Spin models, flipping domains or clusters of spins (e.g. Wolf).

Reduces the scaling of the fluctuations for the covariances (O(N ))
Wolf, Nuc. Phys. B [1988]

Domain exchange algorithm use a pair of replicas of the system.
Ising models (Chayes, J. Stat. Phys. (1998)) and lattice models
with a Z2 symetry. M. Hasenbusch, Phys. Rev. E 97, 012119
(2018).
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Generalization to Two-body interacting system

Pair wise interacting system

Z =

∫

p(r)dr with p(r) =
∏

i ,j

wij (ri , rj )

Examples

Statistical physics

Z =

∫

e−β
∑

i,j v(ri ,rj )
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Generalization to Two-body interacting system

Pair wise interacting system

Z =

∫

p(r)dr with p(r) =
∏

i ,j

wij (ri , rj )

Examples

Statistical physics

Z =

∫

e−β
∑

i,j v(ri ,rj )−β
∑

i ṙi
2
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Generalization to Two-body interacting system

Pair wise interacting system

Z =

∫

p(r)dr with p(r) =
∏

i ,j

wij (ri , rj )

Examples

Statistical physics

Z =

∫

e−β
∑

i,j v(ri ,rj )−β
∑

i ṙi
2

Quantum physics Z =
∫
e−

∫
dtL(r ,ṙ) (Feyman integral)

dtL(r , ṙ ) ≃
︸︷︷︸

Trotter

1

2dt

∑

i

(ri (t + dt)− ri (t))
2 + dt

∑

ij

v(ri (t), rj (t))
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Exchange cluster algorithms

Pairwise probability density to be sampled p.

Defining an independent replicas

r ∈ Ω
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Exchange cluster algorithms

Pairwise probability density to be sampled p.

Defining an independent replicas

r ∈ Ω → (r1, r2) ∈ Ω1 × Ω2

P(r1, r2) = p(r1)p(r2) (3)

Building links between indices of the variables

w11

ij interaction between r1i and r1j
w12

ij interaction between r1i and r2j (particle j of system 2 put in 1).

w21

ij interaction between r2i and r1j (particle j of system 1 put in 2).

Probability to link i and j

1−min

(

w12
ij w

21
ij

w11
ij w

22
ij

, 1

)

(4)
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Building domains

A domain (cluster) is a list of linked indices.

An indix ⇔ pair of variables ∈ Ω1 × Ω2.

Domain (cluster) list of pairs of variables belonging to the two
replicas.

Domains can be exchanged at will between the two replicas !

This operation leaves the joint density P(r1, r2) = p(r1)p(r2)
invariant.

proof: checking the detailed balance property
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Intuitive and physical interpretation

Some illustrative properties

Probability to unlink (i , j ) = 1 ⇐⇒ w12
ij w

21
ij ≥ w11

ij w
22
ij

⇐⇒ favorizes exchanging one particle i or j .
=⇒ If (i , j ) are not indirectly linked they belong to different
domains.

If (i , j ) not interacting in the two systems =⇒ probability to
unlink (i , j ) = 1

The more two fragments are independent the more frequent they
can be separately replaced by another fragment belonging to the
other replica
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Domains in the Lennard Jones model

Lennard Jones model

Particles in a 3-dimensional box.

Interaction between particle i and j

uij = 4ǫ[(
σ

rij
)12 − (

σ

rij
)6] (5)

where rij is the distance between particle i and j .
σ = 3.4A
ǫ
k
= 1.00568KJ. mol−1

Density 1 particle for a sphere of radius 10A
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Figure: Average number of domains and heat capacity per particle
(Lennard Jones model) N=50 particles in a 59× 59 box
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Sampling the exchange of domains improve ergodicity but is a tool
to reduce the scaling of the variance

The exchange domain operators D̂ form a commutative algebra of
2Nd P invariant and self-adjoint operators, which can be used to

build 2Nd control variates.

D̂(P) = P =⇒ E(D̂(O)) = E(O)

.
proof (I.P.P.)

∫
OP =

∫
D̂(P)O =

∫
PD̂(O)
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Computation of covariances

U = 1

2

∑

i,j uij and V = 1

2

∑

i,j vij
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Computation of covariances

U = 1

2

∑

i,j uij and V = 1

2

∑

i,j vij

cov(U,V) ≡ E(U,V)− E(U)E(V)
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Computation of covariances

U = 1

2

∑

i,j uij and V = 1

2

∑

i,j vij

cov(U,V) ≡ E(U,V)− E(U)E(V)

1

2
(U 1 −U 2)(V 1 −V 2) unbiased estimator on the replicas.

1

2
(U 1 −U 2)(V 1 −V 2) =

1

8

∑

i,j ,k ,l

(u11

ij − u22

ij )(v
11

kl − v22

kl ) (6)
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Computation of covariances

U = 1

2

∑

i,j uij and V = 1

2

∑

i,j vij

cov(U,V) ≡ E(U,V)− E(U)E(V)

1

2
(U 1 −U 2)(V 1 −V 2) unbiased estimator on the replicas.

1

2
(U 1 −U 2)(V 1 −V 2) =

1

8

∑

i,j ,k ,l

(u11

ij − u22

ij )(v
11

kl − v22

kl ) (6)

Basic Idea

Dkl beeing the minimal domain containing (k , l). If Dkl

⋂
Dij = ∅

1

2
(1 + D̂kl)((u

11

ij − u22

ij )(v
11

kl − v22

kl )) = 0

The sum (6) is reduced to O(N ) terms, and the variance is O(N ) down
from O(N 2) !
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One simple improved estimator of the covariance. Let (m,n) be a
pair of domains.
Interactions between two domains

U 11
mn ≡

∑

(i ,j )∈Dm×Dn

u11
ij

Roland Assaraf1 , Hilaire Chevreau Towards computing efficently cumulants in Monte Carlo, exchange



Introduction

Extensivity problem for the fluctuations to compute a covariance

Higher order cumulants and the sign problem

Lowering the scaling of the fluctuations to compute a covariance

Conclusion

One simple improved estimator of the covariance. Let (m,n) be a
pair of domains.
Interactions between two domains

U 11
mn ≡

∑

(i ,j )∈Dm×Dn

u11
ij − u22

ij

V 11
mn ≡

∑

(i ,j )∈Dm×Dn

v11ij − v22ij (7)
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One simple improved estimator of the covariance. Let (m,n) be a
pair of domains.
Interactions between two domains

U 11
mn ≡

∑

(i ,j )∈Dm×Dn

u11
ij − u22

ij

V 11
mn ≡

∑

(i ,j )∈Dm×Dn

v11ij − v22ij (7)

Interaction between one domain m and the other domains.

U11
m ≡

U 11
mm

2
+
∑

p 6=m

U 11
mp

V11
m ≡

V 11
mm

2
+
∑

p 6=m

V 11
mp
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Estimator of the covariance

χ̃ =
1

2

∑

m

U11
m V11

m −
1

2

∑

m<n

U 11
mnV

11
mn (8)

O(N ) terms since Umn → 0 and Vmn → 0 if Dm far from Dn .

Size extensivity of the variance of χ
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Specific heat (Lennard Jones model)

Cv ≡ k
T2 (< U 2 > − < U >2) = k

T2 cov(U,U)
where U is the Lennard Jones potential
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Figure: Average number of domains and heat capacity per particle
(Lennard Jones model), T = 100K
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Method for a general pairwise interacting variables model to
compute covariances with size extensive variance O(N ) down
from O(N 2).

Based on an exchange cluster algorithm, using an independent
replica.

Proof of concept on a Lennard Jones model (continous model
with no Z2 symmetry).
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Method for a general pairwise interacting variables model to
compute covariances with size extensive variance O(N ) down
from O(N 2).

Based on an exchange cluster algorithm, using an independent
replica.

Proof of concept on a Lennard Jones model (continous model
with no Z2 symmetry).

Work in progress

Extension to higher order cumulants (with H. Chevreau).

Extension to quantum bosonic systems.

Other method applicable to non pair-wise systems (Variational
and Diffusion Monte Carlo) with A. Bienvenu and J. Feldt.
Using conditional expectation values (side walks).
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