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Clifford boundary conditions

Stefano Evangelisti



Clifford periodic boundary conditions

Motivation: efficient and general method for the description of periodic
systems with an explicit two-body Coulomb interaction

Strategy:

I Isolate a fragment of the system.

I Modify the topology of this supercell to
that of a Clifford torus (flat)

I Use the Euclidean distance of the
embedding space in the Coulomb potential

I Converge result with respect to the size of
the supercell.



Madelung constants

A classical problem with a two-body Coulomb interaction. Applying Clifford
periodic boundary conditions allows for a direct-sum solution.

We construct a Clifford supercell (CSC)
with K ions per side.

2D NaCl on a 2-torus

Example: CsCl (3D)

CSC results converge monotonically to the reference value

Tavernier et al., J. Phys. Chem. Lett. 11, 7090 (2020)
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Madelung constants
Results are linear as a function of K−2.
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We can extrapolate using

M(K) = M∞ + CK−2,

Other crystal structures

Tavernier et al., J. Phys. Chem. Lett. 11, 7090 (2020)



Wigner crystals: Ground-state energies

Ground-state energy per electron of a Wigner crystal :

EWC ∼
η0

rs
+

η1

r
3/2
s

+
η2

r 2
s

+
η3

r
5/2
s

+ ...

η0: energy of a classical Wigner crystal
η1: zero-point correction in the harmonic approximation.

Most accurate literature values before our work.

1D 2D 3D
linear lattice triangular lattice bcc lattice

η0 - -1.106 103 -0.895 929
η1 0.359 933 0.795 1.328 62



Wigner crystals: Clifford approach

We now use our Clifford PBC approach.

η0

rs
=

U0

N

triangular lattice on a 2-torus

Lattice η2D
0

this work literature
square -1.100 244 420 -1.100 244
triangle -1.106 102 587 -1.106 103

Lattice η3D
0

this work literature
simple cubic -0.880 059 440 -0.880 059
body-centered cubic -0.895 929 255 -0.895 929
face-centered cubic -0.895 873 614 -0.895 874
hexagonal close packed -0.895 838 120 -0.895 838

Alves et al., Phys. Rev. B 103, 245125 (2021)
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Wigner crystals: zero-point correction

Using a normal mode transformation we can also calculate η1.

η1

r
3/2
s

=
1

2N

N∑
k=1

d∑
α=1

ωk,α.

Lattice η1

this work literature
1D (linear) 0.359 933 0.359 933
2D (triangular) 0.813 686 0.795
3D (body-centered cubic) 1.328 624 1.328 62

All our results in agreement with literature values except η1 in 2D.

Alves et al., Phys. Rev. B 103, 245125 (2021)



Quantum applications

We also applied our Clifford approach
to quantum systems.

Wigner localisation at (very) low
density with 2 electrons in the Clifford
supercell

Summary

I 1s gaussians on a regular grid in
the CSC

I create symmetry adapted orbitals
(SAO)

I calculate the 1- and 2-electron
integrals in the SAO basis

I exact diagonalization

Miguel Escobar Azor

Escobar Azor et al., J. Chem. Phys. 155, 124114 (2021)



Results: 2-RDM

We can characterize the Wigner localization using the 2-RDM (Γ(2)) in the
local gaussian basis.
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Outlook

I more electrons

I configuration interaction, coupled cluster

I solids
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A periodic position operator

Another way to characterize Wigner localisation is to look at the total position
spread (TPS) of the electrons

Λ = 〈Ψ|R̂2|Ψ〉 − 〈Ψ|R̂|Ψ〉2

where R̂ is defined as

R̂ =
N∑
i=1

ri

The TPS per electron Λ/N is known as the localisation tensor.

However r is incompatible with PBC, so we cannot calculate the TPS within
our periodic Clifford formalism.

Can we define a one-body position operator that is consistent with PBC?



A periodic position operator
In 1D a one-body position qL(x) compatible with PBC should satisfy the
following 4 conditions.

1. translational invariance
qL(x + L) = qL(x) ∀x .

2. one-to-one correspondence between x and qL(x).

x 6= 0 ⇒ qL(x) 6= q(0).

3. the distance between q(x) and q(x + d) is independent of x .

|qL(x + d)− qL(x)| = |qL(d)− qL(0)|.

4. for L→∞ we must obtain the OBC distance.

lim
L→∞

|qL(d)− qL(0)| = d .

Only one possibility (modulo a phase factor and additive constant)

qL(x) =
L

2πi

[
exp

(
2πi

L
x

)
− 1

]
The distance |qL(x1)− qL(x2)| is the Euclidean distance in the embedding

space of the CSC.

Valenca et al., PRB 99, 205144 (2019)

Evangelisti et al., arXiv:2111.12538



Photoemission from the 3-body Green’s
function

Gabriele Riva Pina Romaniello



Photoemission from the 1-body Green’s function

The spectral function A(ω) of G1(ω) is linked to photoemission spectroscopy
(sudden approximation)

A(ω) =
1

π
|ImG1(ω)|

Lehmann representation

G1(ω)=
∑
n

〈ΨN
0 |ψ̂|ΨN+1

n 〉〈ΨN+1
n |ψ̂†|ΨN

0 〉
ω − (EN+1

n − EN
0 ) + iη

+
∑
n

〈ΨN
0 |ψ̂†|Ψ

N−1
n 〉〈ΨN−1

n |ψ̂|ΨN
0 〉

ω − (EN
0 − EN−1

n )− iη

It is convenient to express G1 in a basis

G1,ij (ω) =

∫∫
dxdx ′G1(x , x ′, ω)φ∗i (x)φj (x

′) (φ = φKS/HF )

One component G1,ii (ω):
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The one-body self-energy

In practice G1 is obtained by solving a Dyson equation

G1(ω) = G01(ω) + G01(ω)Σ1(ω)G1(ω)

G01 is a noninteracting Green’s function (GKS ,GHF in practice)

G01(ω) =
∑
n

φnφ∗n
ω − ε0

n + iηsign(ε0
n − µ)

ε0
n = εKS/HF

G01 only contains (approximate) QP poles → Σ1(ω) has to create all satellites.

In the diagonal approximation

G1,ii (ω) =
1

ω − ε0
i − Σ1,ii (ω)

one sees we need a dynamical Σ1(ω) to obtain satellites.
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Self-energy: static or dynamical?

static Σ1

I no satellites

I QP energies not always accurate

I self-consistency simple

dynamical Σ1(ω)

I satellites

I accurate QP energies

I self-consistency cumbersome

I satellites not always accurate

I multiple solutions

AB et al. JCTC 17, 191 (2021)

Can we have the best of both worlds?
(not worrying too much about computational time for now)



Photoemission from the 3-body Green’s function

Photoemission can be seen as a 3 particle process (1 ).

Q(ω)→
(
Q C1

C2 S

)

We can build a non-interacting three-body GF (G h
03) of one hole plus an

electron-hole pair.

Gh
03(ω) =

∑
v,v′

∑
c

φvφ∗vφv′φ
∗
v′φcφ

∗
c

ω − εv + (εc − εv′ )− iη
+ · · ·

and similar one for G e
03 (one electron plus an electron-hole pair)

Since G e+h
03 (ω) contains satellites we solve a Dyson equation with a static Σ3

G e+h
3 (ω) = G e+h

03 (ω) + G e+h
03 (ω)Σ3G

e+h
3 (ω)

Finally, we contract G e+h
3 (ω) to obtain G1(ω) (and A(ω))

G e
1 (x1, x1′ , ω) =

1

N2

∫∫
dx2dx3G

e
3 (x1, x2, x3, x1′ , x3, x2, ω)

Gh
1 (x1, x1′ , ω) =

1

(N − 1)2

∫∫
dx2dx3G

h
3 (x1, x2, x3, x1′ , x3, x2, ω)
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Proof-of-principle: Hubbard dimer

1/4 filling (1 electron): The exact Σ3 is static.

1/2 filling (2 electrons)

Conclusion: a static Σ3 can reproduce both QP and satellites.

Riva et al. arXiv:2110.05623



Many-body effective energy theory

Stefano Di Sabatino Pina Romaniello



NiO

Bulk NiO in its paramagnetic phase. Metal or insulator?

Standard theories wrongly predicts NiO (PM) to be a metal.



Many-body Effective Energy Technique (MEET)

Introduce occupation numbers ni , i.e., eigenvalues of the 1-RDM.
Fractional ni → correlation.

1. Spectral representation of GR(ω) in the basis of natural orbitals.

GR
ii (ω) =

∑
k

Bk
ii︷ ︸︸ ︷

〈Ψ0|c†i |Ψ
N−1
k 〉〈ΨN−1

k |ci |Ψ0〉
ω − εk

εk = EN−1
k − E0

2. Introduce an effective energy δi (ω)

GR
ii (ω) =

∑
k

Bk
ii

ω − εk
=
∑
k

Bk
ii

ω − δi (ω)
=

ni
ω − δi (ω)

3. Do the same ”trick” for δi (ω)

δi (ω) =
1

GR
ii (ω)

∑
k

Bk
ii εk

ω − εk
=

1

GR
ii (ω)

∑
k

〈Ψ0|c†i |Ψ
N−1
k 〉〈ΨN−1

k |[Ĥ, ci ]|Ψ0〉
ω − δ̃i (ω)

4. Truncate the series
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RDMFT

Working out the commutators yields reduced density matrices.
For example, 〈ΨN−1

k |[Ĥ, ci ]|Ψ0〉 yields Γ(2)

Use RDMFT to calculate ni and approximate Γ(2).

The unknown part of the energy is Exc

Exc =

∫∫
dxdx ′vc(x , x ′)Γ(2)

xc [γ](x , x ′; x , x ′)

We need approximations for Γ
(2)
xc

Exc =

∫∫
dxdx ′vc(x , x ′)γα(x , x ′)γα(x ′, x)

Power functional (PF): α = 0.65

S. Sharma et al. PRB 78 (2008); A. M. K. Müller, Phys Lett A 105 (1984)
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MEET: Silicon

We have a gap !
... but it is much too big

S. Di Sabatino et al., PRB 94, 155141 (2016)

S. Di Sabatino et al., JCTC 15, 5080 (2019)



MEET: NiO

Two possible source of error

I truncation of the MEET series

I RDMFT functional (PF)

We compare MEET@PF(red dots) with
MEET@QMC (open symbols) for the
band structure of silicon.

Influence of the functional on the error
is significant.

Kent et al. PRB 57, 15293



Extended Koopmans’ theorem

MEET at lowest order is equivalent to the extended Koopmans’ theorem
(EKT) in the diagonal approximation

Everything about the EKT for photoemission spectroscopy can be found in
Stefano Di Sabatino’s recent ETSF seminar :

https://www.youtube.com/watch?v=m5an9J1QzlY

S. Di Sabatino et al., Frontiers in Chem. 9, 746735 (2021)
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Conclusions

I Clifford periodic boundary conditions are efficient to describe periodic
Coulomb systems.

I Using the 3-GF we can describe satellites with a static self-energy.

I MEET/EKT promising for (strongly) correlated materials but better
occupation numbers are needed


