

Bogoliubov Coupled Cluster theory for open-shell nuclei

Pepijn DEMOL

Supervisors:Thomas DUGUETRiccardo RAABECo-supervisor:Alexander TICHAI

GDR NBODY

11/01/2022

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

2

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Huge diversity of nuclear phenomena

The atomic nucleus is a strongly correlated self-bound many-body quantum system and therefore intrinsically complex

KU LEUVEN

esearch Foundation

Huge diversity of nuclear phenomena

Many Models

Examples

- Liquid drop model
- Rotational & vibrational models
- Shell model
- Nilsson model
- ...

• Short comings

- Not straightforwardly improvable
- No clear path to connect them

Effective Theories

- Resolves these short comings
 - Systematically improvable
 - Connections (reduction) possible

KU LEUVEN

Research Foundation

Effective field theory

Emergence of phenomena from effective description

More elementary description, reductionism

Chiral effective field theory (χ -EFT)

protons & neutrons as d.o.f.

Effective field theory (EFT)

- Identifying appropriate degrees of freedom (d.o.f.)
- ALL interactions complying with symmetries of underlying theory
- Ordered in expansion governing hierarchy (power counting)
- Fix low energy constants (LEC) from data (or underlying theory)

Effective field theory

Emergence of phenomena from effective description

More elementary description, reductionism

KU LEUVEN

Research Foundation

Opening new horizons

Flanders

"Ab initio" approach to nuclear structure

Assumptions

- Structure-less protons and neutrons as d.o.f.
 - All nucleons active (no inert core)
- Only elementary interactions between them
 - Sound connection to QCD
 - All possible interactions allowed by symmetry
 - Up to A-body forces (in principle)

Ab initio ("from scratch") scheme = solve A-body Schrödinger equation (S.E.)

$$\hat{H}|\Psi_n^A\rangle = E_n^A|\Psi_n^A\rangle$$

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

② Solving the Schrödinger equation

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

KU LEUVEN

Research Foundation

)penina new horizons

② Solving the Schrödinger equation

[2] A.Tichai, P.Arthuis, T. Duguet et al. *Phys. Lett.* B 786 195 (2018)
[3] V. Somà, T. Duguet, C. Barbieri, *Phys. Rev. C* 84 064317 (2011)
[4] A.Signoracci, T. Duguet et al. *Phys. Rev. C* 91 064320 (2015)
[5] M. Frosini, T. Duguet, J.-P. Ebran, V. Somà, arXiv:2110.15737 (2021)

13

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

KU LEUVEN

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Scalability

KU LEUVEN

Research Foundation

Opening new horizons

Scalability

m-scheme BCC

- Direct implementation of the BCC equations
- **X** not scalable to large model spaces

Angular momentum coupling (AMC)

J-scheme BCC

- Exploit shared rotational symmetry of H and computational basis
 - m-degeneracy much larger than in QC \rightarrow larger gain
- ✓ Resolves scalability problem
- Spherical BCC equations much more involved
 - Assisted with automated AMC tools [6]
- Benchmarked w.r.t. m-scheme code (small model spaces)

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Results

- m-scheme BCCSD
- Ground-state ²²O
- 5 major shells in computational basis

m-scheme BCCSD ²²O

Department of Physics and Astronomy Institute for Nuclear and Radiation Physics

- "Ab initio" many-body approach to nuclear systems
- Open-shell frontier
- Bogoliubov coupled cluster (BCC) theory
- Scalability
- Results
- Outlook

Outlook

KU LEUVEN

esearch Foundation

Collaborators

T. Duguet R. Raabe

R. Roth **A. Tichai**

T. Duguet J.-P. Ebran A. Porro A. Roux A. Scalesi V. Somà

G. Hagen

Research Foundation Flanders Opening new horizons