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What is a Wigner Crystal?

Almost a century ago E. Wigner predicted that a system consisting
of interacting electrons in a neutralizing uniform background
would, at sufficiently low densities, crystallize with electrons
sharply localized around equilibrium positions.

Wigner cristallization in 2D. From P. D. Drummond et al., J. of
Math. Phys. 54, 042107 (2013)
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What is a Wigner Crystal?

For a system constituted of free electrons, two different limits can
be observed, a high- and a low-density regimes.

• High (electron) density (small rs)

– The kinetic energy , proportional to r−2
s , dominates the

electronic repulsion (weakly-correlated regime).
– Fermi liquid = delocalized state

• Low (electron) density (large rs)

– The electronic repulsion energy , proportional to r−1
s ,

dominates the kinetic energy (strongly-correlated regime).
– Wigner crystal = electrons localize on lattice sites (Wigner

localization).
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System description

We will study a system consisting of 2 interacting electrons
confined to a d-dimensional Clifford torus.

The Hamiltonian of the system is

Ĥ = −1

2
∇2

1 −
1

2
∇2

2 +
1

r12

Basis set

gµ(r − Rµ) =

(
2α

π

) 3
4

e−α|r−Rµ|2

M-identical 1s Gaussian orbitals evenly distributed on a regular
d-dimensional grid having a common α exponent.
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Confining the electrons

• Confine the electrons to a d-dimensional space with a positive
background.

• Creation of a d-dimensional closed space.

• Use of Periodic boundary conditions (PBC).
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Confining the electrons. d-Clifford Torus supercell

A Clifford torus is a flat, closed d-dimensional real Euclidean space
embedded in a d-dimensional complex Euclidean space. The

approach consists in creating a d-dimensional regular supercell and
then modify its topology into the topology of a d-dimensional

torus by identifying and ”gluing”opposite sides.
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Clifford Boundary Conditions. Defining the distance.

Geodesic distance defined as the length of the shortest path
between two points on the surface of the torus.

rgeo12 =

√√√√ d∑
i=1

r212(i)

r12(i) =


|r1(i)− r2(i)| if |r1(i)− r2(i)| ≤ L

2

L− |r1(i)− r2(i)| if |r1(i)− r2(i)| > L
2
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Clifford Boundary Conditions. Defining the distance.

Euclidean (or straight-line) distance, defined as the length of the
shortest possible path between two points in the embedding space
of the Clifford torus.

deuc
13 =

L

π
sin(

πr13
L

)

deuc
12 =

L

π

√√√√ d∑
i=1

sin2
(
r12(i)

π

L

)
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Clifford Boundary Conditions. Defining the distance. Geodesic
vs Euclidean.

The derivative of the
geodesical distance
with respect to a
Cartesian coordinate (i)
is discontinuous in those
points where r12(i) = L

2 .
While the Euclidean
distance is smooth and
continuously differentiable.
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Symmetry adapted orbital (SAO)

• Primitive basis consisting of M-identical 1s orbitals.

gµ(r − Rµ) =

(
2α

π

) 3
4

e−α|r−Rµ|2

• The system is translational invariant. [Ĥ, T̂R ] = 0

• The eigenstates of Ĥ can be chosen to be equal to the
eigenstates of T̂R

ϕk(r) = S
−1/2
k

∑
µ∈CSC

e i
2π
m
k·µgµ(r − Rµ)

• We solve the time-independent Schrödinger equation by
employing an exact diagonalization approach
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Validation. Semi-Classical model

In the strong correlated limit we can Taylor expand the Coulomb
potential in the Hamiltonian

Ĥ = −1

2

∑
1,2

∇2
r⃗i
+ Û0 + Û1 + Û2︸ ︷︷ ︸
Ĥ0

+Û3 + Û4 + · · ·

Û0 is the classical energy of two electrons located at their
equilibrium positions.

Û0 =
1

r euc12

→ U0 =
π√
dL
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potential in the Hamiltonian

Ĥ = −1

2

∑
1,2

∇2
r⃗i
+ Û0 + Û1 + Û2︸ ︷︷ ︸
Ĥ0

+Û3 + Û4 + · · ·

Û2 represents the zero-point correction to the classical energy in
the harmonic approximation. Equivalent to a quantum harmonic
oscillator with harmonic frequency

ω =

√
2π3

(dL2)
3
2
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2

∑
1,2

∇2
r⃗i
+ Û0 + Û1 + Û2︸ ︷︷ ︸
Ĥ0

+Û3 + Û4 + · · ·

The anharmonics corrections can be calculated using perturbation
theory where the lowest-order correction to the energy consists of
Û2
3 and Û1

4

U1
4 =

(6− d)π2

16L2
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2-Reduced density matrix

For two electrons confined into a Clifford supercell the diagonal
elements of the 2-RDM are given by

Γ(r1, r2) = |Ψ(r1, r2)|2

It is useful to express Γ into the gaussian basis set according to

Γµ,ν =

∫∫
gµ(r1)gν(r2)Γ(r1, r2)dr1dr2
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1-Clifford Torus Validation Semi-Classical model vs Quantum
approach
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2-Clifford Torus Validation Semi-Classical model vs Quantum
approach
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3-Clifford Torus Validation Semi-Classical model vs Quantum
approach
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2-RDM 1-Clifford Torus
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2-RDM 2-Clifford Torus
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2-RDM 3-Clifford Torus
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Conclusions

We have presented an accurate and numerically efficient approach
to study Wigner localization in systems of various dimensions. Its
main features are:

• The application of Clifford periodic boundary conditions with
a renormalized distance to describe the Coulomb potential

• The use of M-identical gaussian basis functions evenly
distributed on a regular grid inside a Clifford supercell.
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Outlook and Perspectives

• The generalization of our approach to more than 2 electrons
in order to study Wigner crystals.

• The implementation of our approach in Hartree-Fock (HF)
theory and post-HF ab initio approaches such as
coupled-cluster theory.

• The inclusion of ions in our approach which will allow the
study of the solid state.

• The development of specific Gaussian basis set adapted to the
topology of the systems (Toroidal Gaussians).
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Thanks for your attention!
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