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[. Hypotheses

N electrons “in” L real-valued spinorbitals defined on D := R3 x {1, |}
One-reference electronic excited-state quantum-chemical calculation methods

L spinorbitals from the GS (|¢)g)) calculation form the “Canonical basis”

CSZ ((pl,...,gDL)

We define C as the span of C

L
C:= Span(<P1,...,<pL)={Z/\g<pg : (Ala"'vAL)€R1XL}
=1

We consider a finite set of M molecular electronic excited states

S={|1),..., Y}
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Definition I.1. Let A and B be m x m and n X n complez-valued matrices,
respectively. The direct sum of A and B reads

_ A O xn
A@B‘(Onm B )

Definition I.2. An n-tuple at = (a%,...,a;ﬁ) of real numbers is given in
decreasing order if
1
al Z e Z a/i.
Definition I.3. An n-tuple a’ = (a{,...,az) of real numbers is given in

increasing order if
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Towards rigorous foundations for the natural-orbital representation of
molecular electronic transitions

Thibaud Etienne*
ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
(Dated: April 27, 2021)

This paper aims at introducing the formal foundations of the application of reduced density-matrix
theory and Green’s function theory to the analysis of molecular electronic transitions. For this sake,
their mechanics, applied to specific objects containing information related to the passage and the
interference between electronic states — the difference and the transition density operators — are
rigorously introduced in a self-contained way: After reducing the corresponding N-body operators
(where N is the number of electrons of the system) using an operator partial-trace procedure,
we derive the kernel of the reduced one-body difference and transition density operators, as well
as the matrix representation of these operators in a finite-dimensional one-particle-state basis.
These derivations are done in first and second quantization for the sake of completeness — the
two formulations are equivalently present in the literature —, and because second quantization is
extensively used in a second part of the paper. Natural orbitals are introduced as appropriate bases
for reducing the dimensionality of the problem and the complexity of the analysis of the transition
phenomenon: Natural-orbital representation of density operators are often used as a tool to
characterize the nature of molecular electronic transitions, so we suggested with this contribution to
revisit their theoretical foundations in order to better understand the origin and nature of these tools.

Keywords:  Molecular ezcited states electronic-structure theory; Reduced density matriz the-
ory; Natural-orbital representation of density operators.

arxiv.org/abs/2104.11947
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Their restriction on C has a Matrix representation in the C basis:
Cagee = (377 .0) <5
Cigon = M (Tfﬁmlc .C) e REXE,

where Sy, is the set of L x L real symmetric matrices.

C = span (C), where C stands for the L—dimensional “Canonical” basis
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Again:
CAfl)—nn =M (A?Hm‘c s C) €Sy,
. . T10—m LxL
Cigom =M (T} ‘C,c) e REXL,
In what follows,

Aa will stand for any A(l)_*m

, with
c

YA = M (&Aa C) )

A will stand for any T(l)_’m

, with
c

YT = M (&Tv C) .

C = span (C), where C stands for the L—dimensional “Canonical” basis
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Any A is an L x L real symmetric matrix. Let

U= (uT)TE[[l,L]]

be the L-tuple of its eigenvectors, the so-called “natural difference orbitals” in
the C basis, and let

u:= (UT)TE[[LL]]

be the L—tuple of its eigenvalues, the so-called “difference occupation numbers”.
We then build the so-called detachment
Ya = —Udiag (min (u;,0)),cp1 1 U’

and attachment
~o = U diag (max (ur, 0))7“6[[1#]] U

1-RDM’s.

~A stands for any one-electron difference density matrix in the L-dimensional C basis
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Figure — Detachment (top) and attachment (bottom) densities.
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~r1 is an L x L real matrix. Let

L:= (er)re[[l,L]]

be the L—tuple of its left-singular vectors, the so-called “left natural transition
orbitals” in the C basis. Let

R = (rr)reﬁl,L]]

be the L—tuple of its right-singular vectors, the so-called “right natural tran-
sition orbitals” in the C basis, and let

s = (ST)TE[[LL]}

be the L-tuple of its singular values.

The left and right singular vectors are paired (each pair shares a singular value).

~T stands for any one-electron transition density matrix in the L—dimensional C basis
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Figure — One pair of natural transition orbitals.
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From what precedes, we get

C basis U basis
L L
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From what precedes, we get

C basis U basis
L L
Aa =23 (va),.len) (ol = ur Juy) (uy
r=1s=1 r=1
and L L L
gl :ZZ T Ts‘éﬁr <P5|:Zsp|€p><7"p‘-
r=1s=1 p=1
C basis Land R bases
Finally, consider the transition “electron” operator and matrix representation
L
'%ZZS M ><€ Iy Ye -—M('AYEaC)Z'YT’Y—’lcv
p=1

and the transition “hole” operator and matrix representation

'Yh—zs rp) (rpl Yn = M (5, C) = yEyr.
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Auxiliary many-body wavefunctions for TDDFRT electronic excited states
Consequences for the representation of molecular electronic transitions

Thibaud Etienne*
ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France

This contribution reports the study of a set of molecular electronic-structure reorganization
representations related to light-induced electronic transitions, modeled in the framework of
time-dependent density-functional response theory. More precisely, the work related in this paper
deals with the consequences, for the electronic transitions natural-orbital characterization, that are
inherent to the use of auxiliary many-body wavefunctions constructed a posteriori and assigned to
excited states — since time-dependent density-functional response theory does not provide excited
state ansétze in its native formulation. Three types of such auxiliary many-body wavefunctions
are studied, and the structure and spectral properties of the relevant matrices (the one-electron
reduced difference and transition density matrices) is discussed and compared with the native
equation-of-motion time-dependent density functional response theory picture of an electronic
transition — we see for instance that within this framework the detachment and attachment density
matrices can be derived without diagonalizing the one-body reduced difference density matrix.
The common “departure/arrival” wavefunction-based representation of the electronic transitions
computed with this method is discussed, and two such common “departure/arrival” density-based
pictures are also compared.

Keywords:  Molecular electronic excited states; electronic-structure reorganization; one-body
reduced density matrices.

arxiv.org/abs/2104.13616
~ in L SO
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Figure — Canonical picture of an electronic transition with the CIS method.
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With this method, the 1-TDM in the C basis is an L x L matrix partitioned as
_ 0, 0oy : Nx(L—N)
’YT<XT Ov) with XeR
The CIS 1-DDM reads
s =719k = vhyr = (-XXT) 0 XX,

Lemma I1.1. The product of a real matrix by its transpose is positive semide-
finite.

CIS NTO’s and NDO’s are identical in the C basis, and

(Yo = =XX" ©0,) = ng=n,
(7(1, =Ye = 0, ® XTX) = MNg = Ne.

1-TDM is the one-electron reduced transition density matrix
1-DDM is the one-electron reduced difference density matrix
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Figure — Detachment/attachment (or hole/electron) picture of a CIS transition.
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Let x and y be the vectors containing single-electron excitation and de-excitation
amplitudes used for computing matrix elements

N
T = Z Z (Xia ali—y, %T&) .
i=1 a=N+1

1-DDM elements in the C basis have the following expression:

Y(r,s) € [1,L]% (Ya)rs 7< OHT* [ g Tm¢0>

1-TDM elements in the C basis have the following expression:

V(r,s) € [L LT, (v1)er = (Vo 715, 7] |uo).

1-DDM is the one-electron reduced difference density matrix
1-TDM is the one-electron reduced transition density matrix
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With this method, the 1-TDM in the C basis is an L x L matrix partitioned as

(0, Y
YT = XT Ov

with the excitation and de-excitation amplitudes being stored in
X c IRI\/X(L*I\/)7
Y e RNX (L—N) .

The 1-DDM in the C basis is again block-diagonal, and reads

Ya=(-XX"-YY") 8 (X'X+Y'"Y).

Lemma I1.2. The sum of two positive semidefinite matrices is positive semi-
definite.
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I1.3 Natural orbitals — Beyond CIS

The EOM-TDDFT detachment /attachment 1-RDM’s read

vo=XX"+YY") ®O0,,
Ya=0,® (XX +Y'Y).

On the other hand, we have the transition hole/electron 1-RDM’s
v =XX"a Y'Y,
v =YY e X'X.
This implies that for EOM-TDDEFT, the two pictures do not coincide:

Yd # Yh = Nd F Nh,
Ya F# Ye = Na F Ne-

For this method, NTO’s and NDOQO’s are, in general, NOT identical.

For this method, NDQO’s are, in general, unpaired.
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Figure — Widespread schematic interpretation of light-induced electronic transition.
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The abovementioned transition picture in terms of a series of

transition-hole NTO — transition-electron NTO

maps

Ty is the 1-TDM, i.e., the one-body reduced transition density matrix
~ in L SO’s C:=(p1,...,01) S = {|1),..., L
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map

Ty is the 1- TDM, i.e., the one-body reduced transition density matrix
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The abovementioned transition picture in terms of a series of
transition-hole NTO — transition-electron NTO
maps, together with the
transition-hole density — transition-electron density

map is dangerous beyond CIS.

T is the 1- TDM, i.e., the one-body reduced transition density matrix
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Reminder: the one-particle reduced difference (A) and transition (T) density
operators

N
Vm € Hla Mﬂv A?Hm = Ztr[[l,N]]\{i} (|¢m> <7/}m‘ - |1/10> <¢0|)a

i=1

N
O™ = trp gy ($m) (W),

i=1
INTERPRETATION
Difference density matrix: “Population difference”, “Departure/Arrival”,...

Transition density matrix: “Coherence”; “Interference”, “Coupling”;...

+ The 1-TDM misses multiple excitations and orbital relaxation effects.
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THE case oF EOM-TDDFT
1. NDOs are, in general, unpaired.
2. NTOs are not meant to provide a “departure/arrival” picture.

3. TDDFRT transition pictures: incomplete, equivocal, or arbitrary ?

CONCLUSION

To date, there is no universal “departure/arrival” natural-spinorbital
representation of molecular-electronic transitions.




[1I. QUANTITATIVE ANALYSIS




II1. Quantitative analy

IIT. Quantitative analysis

Upper bound for the charge transferred during a molecular electronic transition
Insights from matrix analysis

Enzo Monino
ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
Present address: Laboratoire de Chimie et Physique Quantiques (UMR 5626),
Université de Toulouse, CNRS, UPS, 81062 Toulouse, France

Thibaud Etienne*
ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France

In this contribution, we report some matrix-algebraic derivations leading to the definition of an
upper bound for the electronic charge that is effectively displaced during a molecular electronic
transition from one electronic quantum state to another. This quantity can be regarded as the
neat charge that has been transferred during the transition, i.e., when we compare the departure
and arrival states one-electron reduced densities and make the “bilan”. For defining its upper
bound, we start by proving a relationship that has been empirically established few decades ago,
relating the value of the integral of the detachment/attachment density in two pictures (one
accounting for transition-induced orbital rotation and one which does not account for such an
orbital relaxation effect). After proving that the detached/attached charge has a higher value in
the relaxed picture than in the unrelaxed one for a family of excited-state calculation methods,
we establish that the upper bound to the relaxed detached/attached charge value is equal to the
unrelaxed detached/attached charge value, to which we add the sum of singular values of the
orbital-relaxation matrix.

Keywords: ~ Molecular electronic excited states; electronic-structure reorganization; one-body
reduced density matrices.

arxiv.org/abs/2104.13465
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II1.1 Transition numbers

We have, by construction, that

L
Z max (ug, 0) = tr (v,)-
=1

u= (uqn)re[[1 L] is the L—tuple of eigenvalues of the real symmetric ya .

1jcTC 2011, 7, 2498-2506.
~ in L SO’s : Dlyenn, S = {|1),..., k
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II1.1 Transition numbers

We have, by construction, that

L
Z max (ug, 0) = tr (v,)-
=1

Since no fraction of charge was gained or lost during the electronic transition,

tr (ya) = tr (va) = 0.

u= (uqn)re[[1 L] is the L—tuple of eigenvalues of the real symmetric ya .

1jcTC 2011, 7, 2498-2506.
~ in L SO’s : Dlyenn, S = {|1),..., 7
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II1.1 Transition numbers

We have, by construction, that

L
Z max (ug, 0) = tr (v,)-
=1

Since no fraction of charge was gained or lost during the electronic transition,

tr (ya) = tr (va) = 0.

In 2011, Le Bahers and coworkers® defined a number, the transferred charge:

1
qcr = 5/ dry [na(ry)].
RS

u= (uqn)re[[1 L] is the L—tuple of eigenvalues of the real symmetric ya .

1jcTC 2011, 7, 2498-2506.
N e in L SO’s
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II1.1 Transition numbers

We have, by construction, that

L
Z max (ug, 0) = tr (v,)-
=1

Since no fraction of charge was gained or lost during the electronic transition,

tr (ya) = tr (va) = 0.

In 2015, we gave the proof 2 that:

¥ >qcr = 5/ dry [na(ry)].
RB

u= (uT)re[[l L] is the L—tuple of eigenvalues of the real symmetric ya .

2JCcTC 2015, 11, 1692-1699.
N e in L SO’s
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II1.2 HG’s conjecture and beyond

J. Phys. Chem. 1995, 99, 14261—14270 14261

Analysis of Electronic Transitions as the Difference of Electron Attachment and
Detachment Densities

Martin Head-Gordon,*' Ana M. Graia,* David Maurice, and Christopher A. White

Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720

Received: April 28, 1995; In Final Form: July 21, 1995®

A new method for analyzing calculations of vertical electronic transitions in molecules is proposed. The
one-electron difference density matrix between the two states is decomposed into the negative of a “detachment
density” describing removal of charge from the initial state plus an “attachment” density describing its new
arrangement in the excited state. This approach relates closely to the simple picture of excited states as
electron promotions from occupied to unoccupied orbitals, and yet it can be applied to arbitrarily complex
wave functions. The trace of the attachment and detachment densities is a measure of the number of electrons
promoted in a transition. Attachment and detachment densities are calculated and analyzed for electronic
transitions in formaldehyde and the nitromethyl radical.
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The gradient expression' yields an

“effective” or “relaxed” density, which comprises egs 13, but
also an additional term in the occupied—virtual blocks:
A=A, =7 (15)

where z is the solution of the CIS z-vector equation. The fact
that the solution of the z-vector equations incorporates orbital
relaxation in the presence of the field has been given as the

reason for the superior dipole moments calculated by the energy
derivative approach.

Attachment—detachment density analysis gives some insight
into the nature of the “orbital relaxation”, by considering the
effect of eq 15 on the unrelaxed attachment and detachment
densities. Since eq 15 couples the occupied—occupied and
virtual—virtual blocks, we can no longer directly write down
the solution for the attachment and detachment densities.
However, we can analyze the general effect of the coupling.
Treating eq 14 as a perturbation first affects the eigenvalues of
the difference density in second order, with all negative
eigenvalues becoming more negative and all positive eigenvalues
becoming more positive. From the interleaving theorem for
eigenvalues of symmetric matrices,2S the same result can be
established in general: the promotion number for the relaxed
CIS density rigorously satisfies p > 1.

p is the trace of the detachment/attachment 1-RDM’s.
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II1.2 HG’s conjecture and beyond

Treating eq 14 as a perturbation first affects the eigenvalues of
the difference density in second order, with all negative
eigenvalues becoming more negative and all positive eigenvalues
becoming more positive. From the interleaving theorem for
eigenvalues of symmetric matrices,> the same result can be
established in general: |the promotion number for the relaxed
CIS density rigorously satisfies p = 1.

p is the trace of the detachment/attachment 1-RDM’s.
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= Can we prove that orbital relaxation increases the CIS ~4/~, traces?

= Can we extend this result beyond CIS?

= Can we provide exact boundary values to the transferred charge?
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Let x be the vector containing single-electron excitation amplitudes used for
computing matrix elements

1-DDM is the one-electron reduced difference density matrix
1-TDM is the one-electron reduced transition density matrix
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II1.2 HG’s conjecture and beyond

Let x be the vector containing single-electron excitation amplitudes used for
computing matrix elements

Relaxed 1-DDM elements in the C basis have the following expression:

Y(r,s) € [1, L], (&%), = < 0’ [T*, [rTsTH n {’I"TSZ} ’¢0>.

1-DDM is the one-electron reduced difference density matrix
1-TDM is the one-electron reduced transition density matrix
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II1.2 HG’s conjecture and beyond

Let x be the vector containing single-electron excitation amplitudes used for
computing matrix elements

Relaxed 1-DDM elements in the C basis have the following expression:
V(r,s) € [ LI, (Va%)ns = (vo| [T7, [#15,7]] + [#15, 2] o) .
with

L
7 = Z Z (zia att — zg; %T&> .

=1 a=N+1

1-DDM is the one-electron reduced difference density matrix
1-TDM is the one-electron reduced transition density matrix
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The CIS unrelaxed 1-DDM is partitioned as

_(-XXT 0,
AT 0, XX )

The CIS relaxed 1-DDM is partitioned as

rlz . _XXT Z
A = ZT XTX .
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Theorem III.1. (Cauchy’s interlacing) Let A be a bordered nxn Hermitian

matriz partitioned as
( y' a )

Be (C(n—l)x(n—l)7

where a is real,

and
y € (C(nfl)xl.

Wk

stands for conjugate transpose in this context.
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and
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Let o = (aI, .,al) and BT = (BI c 6271) be the n—tuple of the eigenva-
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of B sorted in increasing order, respectively.
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II1.2 HG’s conjecture and beyond

Theorem III.1. (Cauchy’s interlacing) Let A be a bordered nxn Hermitian

matriz partitioned as
( y' a )

Be (C(n—l)x(n—l)7

where a is real,

and
y € (C(nfl)xl.

Let o = (aI, .,al) and BT = (BI c 6271) be the n—tuple of the eigenva-
lues of A sorted in the increasing order and the (n— 1)—tuple of the eigenvalues
of B sorted in increasing order, respectively. Then,

T T T T
a) <B] <ay<---<pl <al.

Wk

stands for conjugate transpose in this context.
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II1.2 HG’s conjecture and beyond

The CIS unrelaxed 1-DDM is partitioned as

_(-XXT 0,
AT 0, XX )

The CIS relaxed 1-DDM is partitioned as

rlz . _XXT Z
A = ZT XTX .
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Theorem IIL.2. (Eigenvalue embedding I) Let A be a n x n Hermitian

matriz partitioned as
B D

BeCm™™ (m < mn).

with

Let o = (al,...,al) and B = (B],...,3])) be the n—tuple of the eigenvalues
of A sorted in the increasing order and the m—tuple of the eigenvalues of B
sorted in increasing order, respectively. Then,

Vi e [[lam]]v O‘I < [)}: < aT

i+n—m*
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Theorem III.3. (Eigenvalue embedding IT) Let A be a n x n Hermitian

matriz partitioned as
B D

C e cln—m)x(n-m) (m < n).

with

Let ot = (af,...,a}) and v = (77, ..., ~}) be the n—tuple of the eigenvalues
of A sorted in the increasing order and the (n —m)—tuple of the eigenvalues of
C sorted in decreasing order, respectively. Then,

Vi€ [1,(n—m)], af >} >a}

= “i4+m-
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II1.2 HG’s conjecture and beyond

We set the following four L—tuples of 1-DDM eigenvalues:

ul = (uI, e uTL) and ut = (ui, . ,uf),
rl = (rI, . ,TE) and rv == (7’%, . ,r%),
where “u” and “u” stand for “unrelaxed”, “r” and “r” stand for “relaxed”.

For both 1-DDM’s, the NW (resp. SE) block is negative (resp. posmve) semidefinite.
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We set the following four L—tuples of 1-DDM eigenvalues:

ul = (uI, e uTL) and ut = (ui, . ,uf)7
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where and “u” stand for “unrelaxed”, “r” and “r” stand for “relaxed”.

From the eigenvalue embedding theorem I we find

Vie [1,N], r] <ul <0.

For both 1-DDM’s, the NW (resp. SE) block is negative (resp. posmve) semidefinite.
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II1.2 HG’s conjecture and beyond

We set the following four L—tuples of 1-DDM eigenvalues:

ul = (uI, e uTL) and ut = (ui, . ,uf)7

rl = (rI, . ,TE) and rv == (7’%, . ,r%),
where “u” and “u” stand for “unrelaxed”, “r” and “r” stand for “relaxed”.

From the eigenvalue embedding theorem I we find
Vie [1,N], r] <ul <0.
From the eigenvalue embedding theorem II we find

VZE[[L(L—N)]],T;LZU;LZO

For both 1-DDM’s, the NW (resp. SE) block is negative (resp. posmve) semidefinite.
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II1.2 HG’s conjecture and beyond

We set the following four L—tuples of 1-DDM eigenvalues:
ul = (uI, e uTL) and ut = (ui, . ,uf)7
rl = (TI, . ,TE) and rv == (7‘%, . ,r%),

143 7’

where and “u” stand for “unrelaxed”, “r” and “r” stand for “relaxed”.

From the eigenvalue embedding theorem I we find
Vi € [1, NJ, riT < uj <0.
From the eigenvalue embedding theorem II we find
Vie[1,(L—N)], r>ur >0.

It is then straightforward to see that

L
I = Zmax (re,0 ZZ ax (ug,0) = 9.
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II1.2 HG’s conjecture and beyond

= Can we prove that orbital relaxation increases the CIS ~4/~, traces?
Answer: Yes, we can!

= Can we extend this result beyond CIS?

CIS, TDHF, TDA, TDDFT, and BSE methods share the necessary and suffi-
cient condition that their unrelazed 1-DDM is block-diagonal, with their NW
(respectively, SE) block being negative (respectively, positive) semidefinite.
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II1.2 HG’s conjecture and beyond

= Can we prove that orbital relaxation increases the CIS ~4/~, traces?
Answer: Yes, we can!
= Can we extend this result beyond CIS?

Answer: Yes, we can!

= Can we provide ezact boundary values to the transferred charge?
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The relaxed—unrelaxed difference density matrix is partitioned as

_ (0, Z
Yz = ZT Ov

with Z being a real N x (L — N) matrix.

¥ is the trace of the unrelaxed detachment/attachment 1-RDM’s.
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The relaxed—unrelaxed difference density matrix is partitioned as
(0, Z
Yz = ZT Ov
with Z being a real N x (L — N) matrix.

Let ¢ be a positive integer defined as

g:=min(N,L— N).

¥ is the trace of the unrelaxed detachment/attachment 1-RDM’s.
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The relaxed—unrelaxed difference density matrix is partitioned as

_ (0, Z
Yz = ZT Ov

with Z being a real N x (L — N) matrix.
Let ¢ be a positive integer defined as
g:=min(N,L— N).

Let (Zr)re[u,q]] be the g—tuple of singular values of Z. Then, the trace of the
relaxation detachment/attachment 1-RDM’s is

94 = er.

r=1

¥ is the trace of the unrelaxed detachment/attachment 1-RDM’s.
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Theorem III.4. (Lidskii-Wielandt) Let A and B be two n x n Hermitian
matrices.
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Theorem III.4. (Lidskii-Wielandt) Let A and B be two n x n Hermitian
matrices. Let C be their sum.
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Theorem III.4. (Lidskii-Wielandt) Let A and B be two n x n Hermitian
matrices. Let C be their sum. Let

at = (af...,ai),
Bt =(Bl.....B),

(’Y%a ce /Yi)a

be the decreasing-order n—tuples of the eigenvalues of A, B, and C respectively.
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Theorem III.4. (Lidskii-Wielandt) Let A and B be two n x n Hermitian
matrices. Let C be their sum. Let

B* = (Bf,...,BY),
i7(’717"%’7#%

be the decreasing-order n—tuples of the eigenvalues of A, B, and C respectively.
Then, for any choice of 1 < i1 < --- < i <n,
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Corollary III.1.

Let A and B be two n x n Hermitian matrices. Let C be
their sum. Let

at = (af...,ai),

BY = (Bf,...,BY),
(7%7 A ”Yi))

be the decreasing-order n—tuples of the eigenvalues of A, B, and C respectively.
Then, the v+ n—tuple is majorized by (oz¢ + ,B*L), ie.,

n

k n
Vkeﬂl,nﬂ,ZijZ(aj—i—,@j) and Z’ysz(ai—i—Bj—).
j=1

Jj=1 Jj=1

Jj=1
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Corollary III.1.

Let A and B be two n x n Hermitian matrices. Let C be
their sum. Let

at = (af...,ai),

BY = (Bf,...,BY),
(7%7 A ”Yi))

be the decreasing-order n—tuples of the eigenvalues of A, B, and C respectively.
Then, the v+ n—tuple is majorized by (oz¢ + ,B*L), ie.,

n

k n
Vkeﬂl,nﬂ,ZijZ(aj—i—,@j) and Z’ysz(ai—i—Bj—).
j=1

Jj=1 Jj=1 Jj=1

Chosing A = ya, B=1z, C=~%%, and k = L — N, we find

(0 <9 <9 +97) and ger € [0, (0 +07)].
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JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 16 22 OCTOBER 2002

Adiabatic time-dependent density functional methods
for excited state properties

Filipp Furche® and Reinhart Ahlrichs
Institut fiir Physikalische Chemie, Universitit Karlsruhe, Kaiserstrafie 12, 76128 Karlsruhe, Germany

(Received 22 May 2002; accepted 30 July 2002)

This work p theory, impl ion, and validation of excited state properties obtained from
time-dependent density functional theory (TDDFT). Based on a fully variational expression for the
excited state energy, a compact derivation of first order properties is given. We report an
implementation of analytic excited state gradients and charge moments for local, gradient corrected,
and hybrid functionals, as well as for the configuration interaction singles (CIS) and time-dependent
Hartree—Fock (TDHF) methods. By exploiting analogies to ground state energy and gradient
calculations, efficient techniques can be transferred to excited state methods. Benchmark results
demonstrate that, for low-lying excited states, geometry optimizations are not substantially more
expensive than for the ground state, independent of the molecular size. We assess the quality of
calculated adiabatic excitation energies, structures, dipole moments, and vibrational frequencies by
comparison with accurate experimental data for a variety of excited states and molecules. Similar
trends are observed for adiabatic excitation energies as for vertical ones. TDDFT is more robust than
CIS and TDHEF, in particular, for geometries differing significantly from the ground state minimum.
The TDDFT excited state structures, dipole moments, and vibrational frequencies are of a
remarkably high quality, which is comparable to that obtained in ground state density functional
calculations. Thus, yielding considerably more accurate results at similar computational cost,
TDDFT rivals CIS as a standard method for calculating excited state properties in larger
molecules. © 2002 American Institute of Physics. [DOI: 10.1063/1.1508368]
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AMpy=u(Pu), 28)
if p denotes the dipole moment operator. Population analysis
of P can elucidate the charge rearrangement and the change
in bond order induced by an electronic excitation. This is
complementary to the information supplied by the vectors
|X,Y), which describe the excitation in terms of occupied
and virtual MOs, i.e., the change in the electronic structure.
The Z vector contribution to P in Eq. (23), which accounts
for orbital relaxation effects, is often of the same order of
magnitude as the “unrelaxed” part 7 and cannot be ne-

lected, in contrast to what has occasionally been assumed.*?

‘We note in passing that, in analogy to the ground state
KS scheme, P would yield the exact density difference if the
exact (time-dependent) exchange-correlation functional were
used. This follows from the fact that the density computed
from P is identical to the functional derivative of the excita-
tion energy with respect to a local external potential.

lil. IMPLEMENTATION
A. General strategy

The results of the last section suggest that the analytic
computation of excited state energy gradients and other prop-

erties should be organized as follows: Given the solution of
the ground state KS equations,

(1) determine the excitation energy () and excitation vector
|X,Y) from Egs. (6);

II1.2 HG’s conjecture and beyond

identical to that for ground state gradients.

To sum up, following the method outlined above, the
effort for an excited state geometry optimization is not sub-
stantially higher than for a ground state geometry optimiza-
tion. It is important to stress the similarity to the computation
of the ground state energy and gradient since this implies that
the whole arsenal of efficient techniques for ground states is
applicable to excited states, too. If there is progress in
ground state methods, excited state methods will also benefit.
Finally, given a code for TDDFT excitation energies and
response properties as well as a ground state gradient code,
excited state gradients can be implemented by minor modi-
fications.

B. Exchange-correlation contributions

The only terms which are not straightforward to transfer
from ground state and linear response calculations are those
containing third-order functional derivatives [Eqs. (21) and
(24)] and geometric derivatives of the exchange-correlation
potential and kernel [Eq. (25)]. However, scrutiny of these
contributions reveals that they can be reduced to the same
form as V:f,,,, and EX® both routinely computed in ground
state energy and gradient calculations. To put this into more
explicit terms, consider the exchange-correlation energy
functional within the generalized gradient approximation
(GGA),




II1. Quantitative a

II1.2 HG’s conjecture and beyond

= Can we prove that orbital relaxation increases the CIS ~4/~, traces?
Answer: Yes, we can!
= Can we extend this result beyond CIS?

Answer: Yes, we can!

= Can we provide ezact boundary values to the transferred charge?




II1. Quantitative a

II1.2 HG’s conjecture and beyond

= Can we prove that orbital relaxation increases the CIS ~4/~, traces?
Answer: Yes, we can!
= Can we extend this result beyond CIS?

Answer: Yes, we can!

= Can we provide ezact boundary values to the transferred charge?

Answer: Yes, we can!




I11. Quantitat

II1.2 HG’s conjecture and beyond

= Can we prove that orbital relaxation increases the CIS ~4/~, traces?
Answer: Yes, we can!

= Can we extend this result beyond CIS?
Answer: Yes, we can!

= Can we provide ezact boundary values to the transferred charge?

Answer: Yes, we can!
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V. Epilogue — The MESRA software

MESRA

Molecular Electronic-Structure Reorganization: Analysis

Home  Contact  Acknowledgements  Theory  Download  License  UsersManual  Updates

Welcome!

€ ST

MSE'a
The MESRA software is a free package mainly aiming at providing a qualitative and
quantitative analysis of electronic transitions’ nature. This is done using pairs of
(relaxed) one-particle density or wave functions, constructed according to multiple
variants ~ (equation-of-motion/linear-response of the density, configuration
interaction) of theories producing one-particle transitions from single-reference
wave functions.

mesrasoftware.wordpress.com
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Electronic transition: transition between two electronic states

H i) =& i) (i € [0, M])
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Electronic transition: transition between two electronic states
A |Pi) = & i) (i € [0, M])

Black — “Ground” state; Blue — First “Excited” state
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Electronic transition: transition between two electronic states
T i) = & i) (i € [0, M])

The |¢g) — |101) electronic transition energy is simply given by

Aéao_)l = éal — (5)0.
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Electronic transition: transition between two electronic states
H Vi) = & i) (i € [0,M])
The |¢g) — |101) electronic transition energy is simply given by
Adp_1 = &1 — ).

For each state (i € [0, M]) there corresponds a mathematical object called
wave function

(r13017r2702,"';rN70N) — 1/)i(r1701,1‘2,02a"' 7rN7O-N)’

One can have a simple idea about the electronic spatial distribution by
considering the state electron density

Vi) V= i = [r1 = n(r1)],

i.e., a very simple object with only three dimensions instead of 4NV.
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II. Qualitative analysis

One can have a simple idea about the electronic spatial distribution by
considering the state electron density

Vi) > i > [r1 > n(r)],

This distribution is unique for a given quantum electronic state, and reflects
some of the properties of the molecule in this state. 2

TLi(I‘l):N Z /dS/l(S(Sl—Sll)/ d52 / dSN/wi(sj)jGﬂl,Nﬂ’(/}i(s;')jGHLNH
are{t 4P P P

D =R x {1}

(sj) = (rj,05)




II. Qualitative analysis

In C, any n function reads?

L L
ry — n(r1 /d51 51—51 ZZ rs‘Pr S1 @s(sl)

ore{T,4} r=1s=1

where the spinorbitals are treated similarly to z, y and z in the three-dimensional
Cartesian basis

Z
r=a;X+ayy+a,z

D =R x {1}

(sj) = (rj,05)
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In C, any n function reads 2

L L
r1 — n(ry) Z /d51 (s1—s} ZZ Y)r,s r(s1 )s(s1)

ore{T,4} r=1s=1

where ~ is called the one-particle reduced density matriz (1-RDM)
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Y11 Y12 ..o YiL — ¥1

Y21 Y22 ... 2L — P2
Y = . . .

Y1 Y2 .-+ YLL — YL

D =R x {1}
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II. Qualitative analysis

In C, any n function reads 2
L L
no )= Y / as) (51— 51) 3 3 (Vs or(51)s(51)
ore{T,} r=1s=1

where ~ is called the one-particle reduced density matriz (1-RDM)

Y11 Y12 .- YIL
Y21 Y22 ... V2L
Y= . . . . _—
Yri Yr2 --- YLL
D =R x {1/}

(sj) = (rj,05)
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II. Qualitative analysis

The state-to-density matrix-to-electron density mapping in C, i.e.,
) — 4 — v — [t — n(r)]
is surjective. Thus, in C,

o) — Yo = [r — no(r)]

[P1) +— m1 = [r —> ni(r)]

|wwondermiche> —— “Ywondermiche H— [I‘ — nwondermiche(r)]

Addition of two 1-RDM’s leads to the same operation on the density functions.




I1.1 Natural orbitals — Generalities

Finding the appropriate U matrix so that U_l'yU is diagonal:

Y1 M2 .- YL Y1 0 ... 0

Vo1 Yo2  o--- VoL U _ 0 A2 ... 0
V= : Y : - 7= : o :

YLi Yre ..o YLL 0 0 ... AL

produces natural orbitals (4,02)1.6[[1 o] e columns of U:

/ / /
Y1 P2 YL
U11 U12 “ e U1L
Uy Uz ... Uy

U= . . . .
Uy U ... Ugp

The diagonal elements of 4 are called natural occupation numbers.




I1.3 Natural orbitals — Beyond CIS

Reminder: the one-particle reduced difference (A) and transition (T) density
operators

N
Vm € Hla Mﬂv A?Hm = Ztr[[l,N]]\{i} (|¢m> <7/}m‘ - |1/10> <¢0|)a

i=1

N
O™ = trp gy ($m) (W),

i=1




I1.3 Natural orbitals — Beyond CIS

Reminder: the one-particle reduced difference (A) and transition (T) density
operators

N
Vm € Hla Mﬂv A?Hm = Ztr[[l,N]]\{i} (|¢m> <7/}m‘ - |1/10> <¢0|)a

i=1

N
O™ = trp gy ($m) (W),

i=1
Residues of the Fourier transform of

—L(1,2;1%,27) = iGo(1,2; 1F,27) —iG1(1;17)G1(2;2T)
are, up to a partial trace, matrix elements in the s-representation of the

T(l)%mT;n%O and T717L~>0T(1)~>m

operators.
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srlx

YA and X7 are two C — C maps.
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the compression operator R, has the rectangular

R, = M (Rv,c,cv) _ ( (} >

matrix representation.
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4a and 43 are two C — C maps. The compression of these two operators to
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II1.2 HG’s conjecture and beyond

4a and 43 are two C — C maps. The compression of these two operators to
the occupied canonical space, C,, using

Co : (C—0C)— (Co —Cy)
A— RYAR,,

has identical matrix representation (—XX'") in C, when A is either 42 or %Alx
if the compression operator R, has the rectangular

rsi(ica)- ()

matrix representation.
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