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Introduction

Figure 1 – Cartoon picture of the DMFT phase
diagram of the half-filled Hubbard model

Figure 2 – DMFT phase diagram of the
half-filled Hubbard model using previously
defined crossover lines [1-5]
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Introduction

Figure 3 – Cartoon picture of the DMFT phase
diagram of the half-filled Hubbard model

We propose a new characterization
of the phase diagram using only
timescales of magnetic
fluctuations and valence
fluctuations that brings :

• Physical insight to the crossover
lines in the supercritical region

• New "slow spin" dome in the
Fermi liquid regime.

Gaspard, L. ; Tomczak, J. M.
Timescale of local moment screening
across and above the Mott
transition, 2021
https ://arxiv.org/abs/2112.02881v1
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The Hubbard model on the Bethe lattice (Z = ∞)

• One orbital per site (i)
• Half-filling (one electron per site
i)

• t : nearest neighbor hopping
• U : Coulomb repulsion between

electrons on the same site
• Z = ∞ Bethe lattice with the

density of states :
D(ε) =

√
4t2−ε2

2πt2 Figure 4 – Schematic picture of the Hubbard
model on a Z=3 Bethe lattice

Ĥ = −t
∑
⟨i ,j⟩,σ

ĉ†i ,σ ĉj ,σ + U
∑
i

n̂i ,↑n̂i ,↓ (1)
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DMFT on the Bethe lattice (Z = ∞)

Figure 5 – Schematic picture of the Single Impurity Anderson Model (SIAM)

We replace the Bethe lattice by the SIAM :

Ĥ = Ĥatom + Ĥbath + Ĥhybridization

Ĥ = Un̂↑n̂↓ + (ε0 − µ)(n̂↑ + n̂↓) +
∑
l ,σ

εl â
†
l ,σâl ,σ +

∑
l ,σ

Vl(â
†
l ,σ ĉσ + ĉ†σâl ,σ)
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DMFT on the Bethe lattice (Z=∞)

DMFT on the Bethe lattice (Z=∞) is exact :

Σimp(ω)

∆(ω) = t2Gimp(ω) Gloc(ω) =
∫

dε 1
ω−ε−Σimp(ω)

D(ε)

CT-HYB

Gimp=Gloc

CT-HYB : Expansion of the partition function in the interaction representation and
Monte-Carlo integration

Z = Tr
[
Tτ exp

(
−β(Ĥatom + Ĥbath)

)
exp

(
−
∫ β

0
dτ Ĥhybridization(τ)

)]
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Magnetic susceptibility

We are interested in the local
magnetic susceptibility computed
in imaginary time τ :

χm(τ) = g2
〈
Tτ Ŝz(τ)Ŝz(0)

〉
(2)

From this we can get the static
local magnetic susceptibility :

χm(iω = 0) =
∫ β

0
χm(τ)dτ (3)

Figure 6 – Local magnetic susceptibility in
imaginary time for U=4.9 and β = 50

χm(iω = 0) = βχm

(
τ =

β

2

)
+

∫ β

0
χm(τ)− χm

(
τ =

β

2

)
dτ (4)
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Magnetic susceptibility

Figure 7 – Local magnetic susceptibility
for U=4.9 and β = 50

Fit of χ(τ) for τ close to 0 :

χm

(
τ ≪ β

2

)
= χm

(
τ =

β

2

)
+

[
χm (τ = 0)− χm

(
τ =

β

2

)]
e−

τ
tm

(5)

tm is the timescale of the magnetic
fluctuations
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Evolution of tm through the phase diagram

Figure 8 – tm as a function of the interaction U
for three values of β

• At low temperature (high β) :
discontinuity in tm at the phase
transition.

• At high temperature (low β) :
continuous evolution of tm

• In all cases : tm reaches a
maximum for a value of U
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Evolution of tm through the phase diagram

Figure 9 – Value of the maximum of tm at
constant U as a function of the temperature

tmax
m (T ) changes behavior for a

given temperature Tc ≈ 0.055
• Below Tc :
tmax
m exhibits a logarithmic

behavior : tmax
m ≈ − log

(
T
γ

)
,

γ ≈ 0.19
• Above Tc :
tmax
m behaves as a power :
tmax
m ∝ T−α, α ≈ 0.27
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Phase diagram using the timescales

Figure 10 – Phase diagram of the Hubbard
model using previously defined quantities

• The coexistence region is
reproduced using the
discontinuity in tm

• The orange line is the
coordinate of the maximum of
tm (tmax

m ). It separates the
Fermi liquid (where the
magnetic fluctuations timescale
increases with the effective mass
of the quasiparticle) and the
Bad metal (where the magnetic
fluctuations become slower).
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Phase diagram using the timescales

Figure 11 – Comparison the tmax
m line from our

work with previous works

• The coexistence region is
reproduced using the
discontinuity in tm

• The orange line is the
coordinate of the maximum of
tm (tmax

m ). It separates the
Fermi liquid (where the
magnetic fluctuations timescale
increases with the effective mass
of the quasiparticle) and the
Bad metal (where the magnetic
fluctuations become slower).
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Evolution of tm through the phase diagram

Figure 12 – tm as a function of the interaction
U for three values of β

• First inflection point of tm (▲),
exists in all the cases :
formation of a local moment.

• Second inflection point of tm
(▼), exists only when tm is
continuous : reaching the
atomic limit.
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Phase diagram using the timescales

Figure 13 – Comparison the tmax
m line from our

work with previous works

• The t−m line is consistent with
the crossover line between
χlocal-moment and χdynamic

indicating the predominance of
the local moment.

• The t+m line indicates the end of
the crossover between the bad
insulator and the Mott phase as
the growing interaction has less
and less effect on the magnetic
fluctuations period (reaching the
atomic limit).
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Phase diagram using the timescales

Figure 14 – Comparison the tmax
m line from our

work with previous works

• The t−m line is consistent with
the crossover line between
χlocal-moment and χdynamic

indicating the predominance of
the local moment.

• The t+m line indicates the end of
the crossover between the bad
insulator and the Mott phase as
the growing interaction has less
and less effect on the magnetic
fluctuations period (reaching the
atomic limit).
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Valence fluctuations

Figure 15 – Schematic representation of a site
coupled to a bath

One can define the timescale
associated with the valence
history using the DMFT
hybridization function ∆(iωn)

thyb = − 1
lim

iωn→0
ℑ∆(iωn)

(6)

How do the two different timescales compare ?
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Magnetic screening vs valence fluctuations

Figure 16 – Heatmap of the ratio between tm
and thyb in the DMFT phase diagram of the
Hubbard model

• tm/thyb < 1 : Magnetic
fluctuations faster than valence
fluctuations.

• tm/thyb > 1 : Magnetic
fluctuations slower than valence
fluctuations.

• Mott phase : No valence
fluctuations, tm ≪ thyb

• Low interaction and/or high
temperature : tm < thyb

• Appearance of a dome where
thyb > tm : valence fluctuations
faster than magnetic
fluctuations (adiabatic spin
response).
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Conclusion

• We provided a new insight into the phase diagram of the Hubbard
model through the lens of spin dynamics.

• We identified a new crossover line within the Fermi liquid phase with a
region with preponderant local moment

• We identified a regime in which the spin dynamics is adiabatic

23 / 23



Introduction

Methods

Results and
discussion

Conclusion

Références

References

(1) Vučičević, J. ; Terletska, H. ; Tanasković, D. ; Dobrosavljević, V. Physical
Review B 2013, 88, Publisher : American Physical Society, 075143.

(2) Chalupa, P. ; Schäfer, T. ; Reitner, M. ; Springer, D. ; Andergassen, S. ;
Toschi, A. Physical Review Letters 2021, 126, Publisher : American Physical
Society, 056403.

(3) Stepanov, E. A. ; Brener, S. ; Harkov, V. ; Katsnelson, M. I. ;
Lichtenstein, A. I. arXiv :2106.12462 [cond-mat] 2021, arXiv : 2106.12462.

(4) Dasari, N. ; Vidhyadhiraja, N. S. ; Jarrell, M. ; McKenzie, R. H. Physical
Review B 2017, 95, Publisher : American Physical Society, 165105.

(5) Toschi, A. ; Capone, M. ; Castellani, C. ; Held, K. Physical Review Letters
2009, 102, Publisher : American Physical Society, 076402.

(6) Gaspard, L. ; Tomczak, J. M. Timescale of local moment screening across
and above the Mott transition, 2021.

24 / 23


	Introduction
	Methods
	The Hubbard model on the Bethe lattice
	DMFT on the Bethe lattice
	Magnetic susceptibility

	Results and discussion
	Evolution of timescales through the phase diagram
	Adiabatic spin response

	Conclusion
	Références

