

[Introduction](#page-2-0) [Methods](#page-5-0) [Results and](#page-11-0)

discussion [Conclusion](#page-21-0)

[Références](#page-23-0)

Timescale of magnetic fluctuations across and above the Mott transition

Léo Gaspard^{1,2} Jan Tomczak²

¹Laboratoire de Chimie et Physique Quantitues, Université Toulouse III - Paul Sabatier

2 Institut of Solid State Physics, Technische Universität Wien

17 janvier 2022

1 [Introduction](#page-2-0)

[Introduction](#page-2-0) [Methods](#page-5-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0)

[Références](#page-23-0)

2 [Methods](#page-5-0)

[The Hubbard model on the Bethe lattice](#page-6-0) [DMFT on the Bethe lattice](#page-7-0) [Magnetic susceptibility](#page-9-0)

³ [Results and discussion](#page-11-0)

[Evolution of timescales through the phase diagram](#page-12-0) [Adiabatic spin response](#page-19-0)

[Introduction](#page-2-0)

[Methods](#page-5-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0)

[Références](#page-23-0)

1 [Introduction](#page-2-0)

2 [Methods](#page-5-0)

[The Hubbard model on the Bethe lattice](#page-6-0) [DMFT on the Bethe lattice](#page-7-0) [Magnetic susceptibility](#page-9-0)

⁸ [Results and discussion](#page-11-0)

[Evolution of timescales through the phase diagram](#page-12-0) [Adiabatic spin response](#page-19-0)

[Références](#page-23-0)

Figure 1 – Cartoon picture of the DMFT phase diagram of the half-filled Hubbard model

Figure 2 – DMFT phase diagram of the half-filled Hubbard model using previously defined crossover lines [\[1-](#page-23-1)[5\]](#page-23-2)

[Results and](#page-11-0)

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure 3 – Cartoon picture of the DMFT phase diagram of the half-filled Hubbard model

We propose a new characterization of the phase diagram using only timescales of magnetic fluctuations and valence fluctuations that brings :

- Physical insight to the crossover lines in the supercritical region
- New "slow spin" dome in the Fermi liquid regime.

Gaspard, L. ; Tomczak, J. M.

Timescale of local moment screening across and above the Mott

transition, 2021 https ://arxiv.org/abs/2112.02881v1

2 [Methods](#page-5-0)

[Introduction](#page-2-0)

[Methods](#page-5-0)

The Hubbard model [on the Bethe lattice](#page-6-0) [DMFT on the](#page-7-0) Bethe lattice

Magnetic [susceptibility](#page-9-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0) [Références](#page-23-0)

1 [Introduction](#page-2-0)

[The Hubbard model on the Bethe lattice](#page-6-0) [DMFT on the Bethe lattice](#page-7-0) [Magnetic susceptibility](#page-9-0)

³ [Results and discussion](#page-11-0)

[Evolution of timescales through the phase diagram](#page-12-0) [Adiabatic spin response](#page-19-0)

[Methods](#page-5-0)

The Hubbard model [on the Bethe lattice](#page-6-0)

[DMFT on the](#page-7-0) Bethe lattice

Magnetic [susceptibility](#page-9-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0) [Références](#page-23-0)

The Hubbard model on the Bethe lattice ($Z = \infty$)

- \bullet One orbital per site (i)
- Half-filling (one electron per site i)
- t : nearest neighbor hopping
- U : Coulomb repulsion between electrons on the same site
- $Z = \infty$ Bethe lattice with the density of states ∶ $D(\varepsilon) = \frac{\sqrt{4t^2-\varepsilon^2}}{2\pi t^2}$ $2\pi t$

Figure 4 – Schematic picture of the Hubbard model on a $7=3$ Bethe lattice

$$
\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}
$$
(1)

DMFT on the Bethe lattice ($Z = \infty$)

[Methods](#page-5-0)

The Hubbard model [on the Bethe lattice](#page-6-0)

[DMFT on the](#page-7-0) Bethe lattice

Magnetic [susceptibility](#page-9-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure 5 – Schematic picture of the Single Impurity Anderson Model (SIAM)

We replace the Bethe lattice by the SIAM :

 $\hat{H}=\hat{H}_\mathsf{atom}+\hat{H}_\mathsf{bath}+\hat{H}_\mathsf{hybridization}$ $\hat{H} = U \hat{n}_{\uparrow} \hat{n}_{\downarrow} + (\varepsilon_0 - \mu)(\hat{n}_{\uparrow} + \hat{n}_{\downarrow}) + \sum$ l, σ ε_l â $_l^{\dagger}$ $\hat{a}^{\dagger}_{l,\sigma} \hat{a}^{}_{l,\sigma} + \sum_{\sigma}$ l, σ $V_I(\hat{a}_I^\dagger$ $\hat{c}_{\sigma}^{\dagger}\hat{c}_{\sigma}+\hat{c}_{\sigma}^{\dagger}\hat{a}_{I,\sigma})$

[Methods](#page-5-0)

The Hubbard model [on the Bethe lattice](#page-6-0)

[DMFT on the](#page-7-0) Bethe lattice

Magnetic [susceptibility](#page-9-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0)

[Références](#page-23-0)

DMFT on the Bethe lattice ($Z=\infty$)

DMFT on the Bethe lattice ($Z=\infty$) is exact :

CT-HYB : Expansion of the partition function in the interaction representation and Monte-Carlo integration

$$
Z=\text{Tr}\left[\mathcal{T}_{\tau}\exp\left(-\beta(\hat{H}_{\rm atom}+\hat{H}_{\rm bath})\right)\exp\left(-\int_{0}^{\beta}\text{d}\tau\hat{H}_{\rm hybridization}(\tau)\right)\right]
$$

[Methods](#page-5-0)

The Hubbard model [on the Bethe lattice](#page-6-0) [DMFT on the](#page-7-0) Bethe lattice

Magnetic [susceptibility](#page-9-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0) [Références](#page-23-0)

Magnetic susceptibility

We are interested in the **local** magnetic susceptibility computed in imaginary time τ :

$$
\chi_m(\tau) = g^2 \left\langle \mathcal{T}_\tau \hat{S}_z(\tau) \hat{S}_z(0) \right\rangle \quad (2)
$$

From this we can get the static local magnetic susceptibility :

$$
\chi_m(i\omega=0)=\int_0^\beta \chi_m(\tau)d\tau
$$
 (3)

Figure 6 – Local magnetic susceptibility in imaginary time for U=4.9 and $\beta = 50$

$$
\chi_m(i\omega = 0) = \beta \chi_m \left(\tau = \frac{\beta}{2}\right) + \int_0^\beta \chi_m(\tau) - \chi_m \left(\tau = \frac{\beta}{2}\right) d\tau \tag{4}
$$

Magnetic susceptibility

[Introduction](#page-2-0)

[Methods](#page-5-0)

The Hubbard model [on the Bethe lattice](#page-6-0) [DMFT on the](#page-7-0)

Bethe lattice Magnetic [susceptibility](#page-9-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0) [Références](#page-23-0)

Figure 7 – Local magnetic susceptibility for U=4.9 and $\beta = 50$

Fit of $\chi(\tau)$ for τ close to 0 :

$$
\chi_m\left(\tau \ll \frac{\beta}{2}\right) = \chi_m\left(\tau = \frac{\beta}{2}\right)
$$

$$
+ \left[\chi_m(\tau = 0) - \chi_m\left(\tau = \frac{\beta}{2}\right)\right] e^{-\frac{\tau}{t_m}}
$$
(5)

 t_m is the timescale of the magnetic fluctuations

[Introduction](#page-2-0)

[Methods](#page-5-0)

[Results and](#page-11-0) discussion

Evolution of [timescales through](#page-12-0) the phase diagram

[Adiabatic spin](#page-19-0) response

[Conclusion](#page-21-0)

[Références](#page-23-0)

1 [Introduction](#page-2-0)

2 [Methods](#page-5-0)

[The Hubbard model on the Bethe lattice](#page-6-0) [DMFT on the Bethe lattice](#page-7-0) [Magnetic susceptibility](#page-9-0)

³ [Results and discussion](#page-11-0)

[Evolution of timescales through the phase diagram](#page-12-0) [Adiabatic spin response](#page-19-0)

Evolution of t_m through the phase diagram

discussion Evolution of

[timescales through](#page-12-0) the phase diagram

[Adiabatic spin](#page-19-0) response

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure $8 - t_m$ as a function of the interaction U for three values of β

- At low temperature (high β) : discontinuity in t_m at the phase transition.
- At high temperature (low β) : continuous evolution of t_m
- In all cases : t_m reaches a maximum for a value of U

Evolution of t_m through the phase diagram

[Methods](#page-5-0)

[Results and](#page-11-0) discussion

Evolution of [timescales through](#page-12-0) the phase diagram

[Adiabatic spin](#page-19-0) response

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure 9 – Value of the maximum of t_m at constant U as a function of the temperature

 $t_m^{max}(T)$ changes behavior for a given temperature $T_c \approx 0.055$

- Below T_c : t_m^{max} exhibits a logarithmic behavior : $t_m^{max} \approx -\log\left(\frac{T}{\gamma}\right)$ $\frac{\mathcal{T}}{\gamma}\bigg),$ $\gamma \approx 0.19$
- Above T_c : t_m^{max} behaves as a power : $t_m^{max} \propto T^{-\alpha}$, $\alpha \approx 0.27$

Phase diagram using the timescales

[Références](#page-23-0)

Figure 10 – Phase diagram of the Hubbard model using previously defined quantities

• The coexistence region is reproduced using the discontinuity in t_m

• The orange line is the coordinate of the maximum of t_m (t_m^{max}). It separates the Fermi liquid (where the magnetic fluctuations timescale increases with the effective mass of the quasiparticle) and the Bad metal (where the magnetic fluctuations become slower).

response

Phase diagram using the timescales

 60 65

Figure 11 – Comparison the t_m^{max} line from our work with previous works

• The coexistence region is reproduced using the discontinuity in t_m

• The orange line is the coordinate of the maximum of t_m (t_m^{max}). It separates the Fermi liquid (where the magnetic fluctuations timescale increases with the effective mass of the quasiparticle) and the Bad metal (where the magnetic fluctuations become slower).

Evolution of t_m through the phase diagram

[Adiabatic spin](#page-19-0) response

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure $12 - t_m$ as a function of the interaction U for three values of β

- First inflection point of $t_m(\triangle)$, exists in all the cases : formation of a local moment.
- Second inflection point of t_m (\blacktriangledown) , exists only when t_m is continuous : reaching the atomic limit.

Phase diagram using the timescales

[Results and](#page-11-0) discussion

Evolution of [timescales through](#page-12-0) the phase diagram

[Adiabatic spin](#page-19-0) response

[Références](#page-23-0)

Figure 13 – Comparison the t_m^{max} line from our work with previous works

- The t_m^- line is consistent with the crossover line between $\chi^{\mathsf{local-moment}}$ and χ^{dynamic} indicating the predominance of the local moment.
- \bullet The t_m^+ line indicates the end of the crossover between the bad insulator and the Mott phase as the growing interaction has less and less effect on the magnetic fluctuations period (reaching the atomic limit).

Phase diagram using the timescales

[Methods](#page-5-0)

[Results and](#page-11-0) discussion

Evolution of [timescales through](#page-12-0) the phase diagram

[Adiabatic spin](#page-19-0) response

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure 14 – Comparison the t_m^{max} line from our work with previous works

- The t_m^- line is consistent with the crossover line between $\chi^{\mathsf{local-moment}}$ and χ^{dynamic} indicating the predominance of the local moment.
- \bullet The t_m^+ line indicates the end of the crossover between the bad insulator and the Mott phase as the growing interaction has less and less effect on the magnetic fluctuations period (reaching the atomic limit).

Valence fluctuations

[Introduction](#page-2-0)

[Methods](#page-5-0)

[Results and](#page-11-0) discussion

Evolution of [timescales through](#page-12-0) the phase diagram

[Adiabatic spin](#page-19-0) response

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure 15 – Schematic representation of a site coupled to a bath

One can define the timescale associated with the valence history using the DMFT hybridization function $\Delta(i\omega_n)$

$$
t_{hyb} = -\frac{1}{\lim_{i\omega_n \to 0} \Im \Delta(i\omega_n)} \qquad (6)
$$

How do the two different timescales compare ?

Magnetic screening vs valence fluctuations

[Results and](#page-11-0)

Evolution of [timescales through](#page-12-0) the phase diagram

[Adiabatic spin](#page-19-0) response

[Conclusion](#page-21-0)

[Références](#page-23-0)

Figure 16 – Heatmap of the ratio between t_m and $t_{h\nu b}$ in the DMFT phase diagram of the Hubbard model

- $t_m/t_{h\nu b} < 1$: Magnetic fluctuations faster than valence fluctuations.
- $t_m/t_{h\nu b} > 1$: Magnetic fluctuations slower than valence fluctuations.
- Mott phase : No valence fluctuations, $t_m \ll t_{h\nu b}$
- Low interaction and/or high temperature : $t_m < t_{hvb}$
- Appearance of a **dome** where $t_{h\nu b} > t_m$: valence fluctuations faster than magnetic fluctuations (adiabatic spin response).

1 [Introduction](#page-2-0)

[Introduction](#page-2-0) [Methods](#page-5-0)

[Results and](#page-11-0) discussion

[Conclusion](#page-21-0)

[Références](#page-23-0)

2 [Methods](#page-5-0)

[The Hubbard model on the Bethe lattice](#page-6-0) [DMFT on the Bethe lattice](#page-7-0) [Magnetic susceptibility](#page-9-0)

⁸ [Results and discussion](#page-11-0)

[Evolution of timescales through the phase diagram](#page-12-0) [Adiabatic spin response](#page-19-0)

- [Introduction](#page-2-0) [Methods](#page-5-0)
- [Results and](#page-11-0) discussion
- [Conclusion](#page-21-0)
- [Références](#page-23-0)
- We provided a new insight into the phase diagram of the Hubbard model through the lens of spin dynamics.
- We identified a new crossover line within the Fermi liquid phase with a region with preponderant local moment
- We identified a regime in which the spin dynamics is adiabatic

References

- [Results and](#page-11-0) discussion
- [Conclusion](#page-21-0)
- [Références](#page-23-0)
- (1) Vučičević, J. ; Terletska, H. ; Tanasković, D. ; Dobrosavljević, V. Physical Review B 2013, 88, Publisher : American Physical Society, 075143.
- (2) Chalupa, P. ; Schäfer, T. ; Reitner, M. ; Springer, D. ; Andergassen, S. ; Toschi, A. Physical Review Letters 2021, 126, Publisher : American Physical Society, 056403.
- (3) Stepanov, E. A. ; Brener, S. ; Harkov, V. ; Katsnelson, M. I. ; Lichtenstein, A. I. arXiv :2106.12462 [cond-mat] 2021, arXiv : 2106.12462.
- (4) Dasari, N. ; Vidhyadhiraja, N. S. ; Jarrell, M. ; McKenzie, R. H. Physical Review B 2017, 95, Publisher : American Physical Society, 165105.
- (5) Toschi, A. ; Capone, M. ; Castellani, C. ; Held, K. Physical Review Letters 2009, 102, Publisher : American Physical Society, 076402.
- (6) Gaspard, L. ; Tomczak, J. M. Timescale of local moment screening across and above the Mott transition, 2021.