

Introduction Methods Results and

Conclusion

Timescale of magnetic fluctuations across and above the Mott transition

Léo Gaspard<sup>1,2</sup> Jan Tomczak <sup>2</sup>

<sup>1</sup>Laboratoire de Chimie et Physique Quantitues, Université Toulouse III - Paul Sabatier

<sup>2</sup>Institut of Solid State Physics, Technische Universität Wien



17 janvier 2022









## 1 Introduction

#### Methods

Results and discussion

Conclusion

Références

## 2 Methods

The Hubbard model on the Bethe lattice DMFT on the Bethe lattice Magnetic susceptibility

## **3** Results and discussion

Evolution of timescales through the phase diagram Adiabatic spin response



#### Introduction

Methods

Results and discussion

Conclusion

Référence

## 1 Introduction

### Methods

The Hubbard model on the Bethe lattice DMFT on the Bethe lattice Magnetic susceptibility

### 3 Results and discussion

Evolution of timescales through the phase diagram Adiabatic spin response







 $\label{eq:Figure 1} \begin{array}{l} \mbox{-} \mbox{Cartoon picture of the DMFT phase} \\ \mbox{diagram of the half-filled Hubbard model} \end{array}$ 



Figure 2 – DMFT phase diagram of the half-filled Hubbard model using previously defined crossover lines [1-5]





Results an discussion

Conclusio

Références



Figure 3 – Cartoon picture of the DMFT phase diagram of the half-filled Hubbard model

We propose a **new characterization** of the phase diagram using only **timescales of magnetic fluctuations** and **valence fluctuations** that brings :

- Physical insight to the crossover lines in the supercritical region
- New "slow spin" dome in the Fermi liquid regime.

Gaspard, L.; Tomczak, J. M.

Timescale of local moment screening across and above the Mott

transition, 2021 https://arxiv.org/abs/2112.02881v1



#### Introduction

#### Methods

The Hubbard model on the Bethe lattice

DMFT on the Bethe lattice

Magnetic susceptibility

Results and discussion

Conclusior

Références

### Introduction

2 Methods

The Hubbard model on the Bethe lattice DMFT on the Bethe lattice Magnetic susceptibility

### Results and discussion

Evolution of timescales through the phase diagram Adiabatic spin response



#### Methods

#### The Hubbard model on the Bethe lattice

DMFT on the Bethe lattice

Magnetic susceptibility

Results and discussion

Conclusio

Références

# The Hubbard model on the Bethe lattice (Z = $\infty$ )

- One orbital per site (*i*)
- Half-filling (one electron per site *i*)
- t : nearest neighbor hopping
- U : Coulomb repulsion between electrons on the same site
- $Z = \infty$  Bethe lattice with the density of states :  $D(\varepsilon) = \frac{\sqrt{4t^2 - \varepsilon^2}}{2\pi t^2}$



Figure 4 – Schematic picture of the Hubbard model on a Z=3 Bethe lattice

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}^{\dagger}_{i,\sigma} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$
(1)



# DMFT on the Bethe lattice ( $Z = \infty$ )

#### Introduction

#### Methods

The Hubbard model on the Bethe lattice

DMFT on the Bethe lattice

Magnetic susceptibility

Results and discussion

Conclusion

Références



Figure 5 – Schematic picture of the Single Impurity Anderson Model (SIAM)

We replace the Bethe lattice by the SIAM :

$$\begin{split} \hat{H} &= \hat{H}_{\mathsf{atom}} + \hat{H}_{\mathsf{bath}} + \hat{H}_{\mathsf{hybridization}} \\ \hat{H} &= U \hat{n}_{\uparrow} \hat{n}_{\downarrow} + (\varepsilon_0 - \mu) (\hat{n}_{\uparrow} + \hat{n}_{\downarrow}) + \sum_{I,\sigma} \varepsilon_I \hat{a}^{\dagger}_{I,\sigma} \hat{a}_{I,\sigma} + \sum_{I,\sigma} V_I (\hat{a}^{\dagger}_{I,\sigma} \hat{c}_{\sigma} + \hat{c}^{\dagger}_{\sigma} \hat{a}_{I,\sigma}) \end{split}$$



#### Methods

The Hubbard model on the Bethe lattice

DMFT on the Bethe lattice

Magnetic susceptibility

Results and discussion

Conclusion

Références

# DMFT on the Bethe lattice $(Z=\infty)$

DMFT on the Bethe lattice (Z= $\infty$ ) is exact :



 $\mathsf{CT}\text{-}\mathsf{HYB}$  : Expansion of the partition function in the interaction representation and Monte-Carlo integration

$$Z = \mathsf{Tr}\left[\mathcal{T}_{ au}\exp\left(-eta(\hat{H}_{\mathsf{atom}}+\hat{H}_{\mathsf{bath}})
ight)\exp\left(-\int_{0}^{eta}\mathsf{d} au\hat{H}_{\mathsf{hybridization}}( au)
ight)
ight]$$



#### Methods

The Hubbard model on the Bethe lattice

DMFT on the Bethe lattice

Magnetic susceptibility

Results and discussion

Conclusion

Références

# Magnetic susceptibility

We are interested in the **local** magnetic susceptibility computed in imaginary time  $\tau$ :

$$\chi_m(\tau) = g^2 \left\langle \mathcal{T}_\tau \hat{S}_z(\tau) \hat{S}_z(0) \right\rangle \quad (2)$$

From this we can get the static local magnetic susceptibility :

$$\chi_m(i\omega=0) = \int_0^\beta \chi_m(\tau) \mathrm{d}\tau$$
 (3)



Figure 6 – Local magnetic susceptibility in imaginary time for U=4.9 and  $\beta = 50$ 

$$\chi_m(i\omega=0) = \beta \chi_m\left(\tau = \frac{\beta}{2}\right) + \int_0^\beta \chi_m(\tau) - \chi_m\left(\tau = \frac{\beta}{2}\right) d\tau \qquad (4)$$



# Magnetic susceptibility

#### Introduction

#### Methods

The Hubbard model on the Bethe lattice

DMFT on the Bethe lattice

Magnetic susceptibility

Results and discussion

Conclusio

Références



Figure 7 – Local magnetic susceptibility for U=4.9 and  $\beta = 50$ 

Fit of  $\chi(\tau)$  for  $\tau$  close to 0 :

-

$$\chi_m \left( \tau \ll \frac{\beta}{2} \right) = \chi_m \left( \tau = \frac{\beta}{2} \right) + \left[ \chi_m \left( \tau = 0 \right) - \chi_m \left( \tau = \frac{\beta}{2} \right) \right] e^{-\frac{\tau}{t_m}}$$
(5)

 $t_m$  is the timescale of the magnetic fluctuations



#### Introduction

Methods

## Results and discussion

Evolution of timescales through the phase diagram

Adiabatic spin response

Conclusion

Références

## Introduction

### Methods

The Hubbard model on the Bethe lattice DMFT on the Bethe lattice Magnetic susceptibility

### **3** Results and discussion

Evolution of timescales through the phase diagram Adiabatic spin response



# Evolution of $t_m$ through the phase diagram





Figure 8 –  $t_m$  as a function of the interaction U for three values of  $\beta$ 

- At low temperature (high β) : discontinuity in t<sub>m</sub> at the phase transition.
- At high temperature (low β) : continuous evolution of t<sub>m</sub>
- In all cases : t<sub>m</sub> reaches a maximum for a value of U



# Evolution of $t_m$ through the phase diagram



Methods

Results and discussion

Evolution of timescales through the phase diagram

Adiabatic spin response

Conclusion

Références



Figure 9 – Value of the maximum of  $t_m$  at constant U as a function of the temperature

 $t_m^{max}(T)$  changes behavior for a given temperature  $T_c \approx 0.055$ 

- Below  $T_c$ :  $t_m^{max}$  exhibits a logarithmic behavior :  $t_m^{max} \approx -\log\left(\frac{T}{\gamma}\right)$ ,  $\gamma \approx 0.19$
- Above  $T_c$ :  $t_m^{max}$  behaves as a power :  $t_m^{max} \propto T^{-\alpha}$ ,  $\alpha \approx 0.27$



# Phase diagram using the timescales





Figure 10 – Phase diagram of the Hubbard model using previously defined quantities

• The coexistence region is reproduced using the **discontinuity in** t<sub>m</sub>

• The orange line is the coordinate of the maximum of  $t_m (t_m^{max})$ . It separates the Fermi liquid (where the magnetic fluctuations timescale increases with the effective mass of the quasiparticle) and the Bad metal (where the magnetic fluctuations become slower).



response

# Phase diagram using the timescales

6.0 6.5



Figure 11 – Comparison the  $t_m^{max}$  line from our work with previous works

 The coexistence region is reproduced using the discontinuity in  $t_m$ 

• The orange line is the coordinate of the **maximum** of  $t_m$  ( $t_m^{max}$ ). It separates the Fermi liquid (where the magnetic fluctuations timescale increases with the effective mass of the quasiparticle) and the Bad metal (where the magnetic fluctuations become slower).



response

# Evolution of $t_m$ through the phase diagram

10



Figure  $12 - t_m$  as a function of the interaction U for three values of  $\beta$ 

- First inflection point of  $t_m$  ( $\blacktriangle$ ), exists in all the cases : formation of a local moment.
- Second inflection point of  $t_m$  $(\mathbf{\nabla})$ , exists only when  $t_m$  is continuous : reaching the atomic limit.



# Phase diagram using the timescales



Results and discussion

Evolution of timescales through the phase diagram

Adiabatic spin response

Conclusion

Références



Figure 13 – Comparison the  $t_m^{max}$  line from our work with previous works

- The  $t_m^-$  line is consistent with the crossover line between  $\chi^{\text{local-moment}}$  and  $\chi^{\text{dynamic}}$ indicating the predominance of the local moment.
- The t<sup>+</sup><sub>m</sub> line indicates the end of the crossover between the bad insulator and the Mott phase as the growing interaction has less and less effect on the magnetic fluctuations period (reaching the atomic limit).



# Phase diagram using the timescales



Results and discussion

Evolution of timescales through the phase diagram

Adiabatic spin response

Conclusion

Références



Figure 14 – Comparison the  $t_m^{max}$  line from our work with previous works

- The  $t_m^-$  line is consistent with the crossover line between  $\chi^{\text{local-moment}}$  and  $\chi^{\text{dynamic}}$ indicating the predominance of the local moment.
- The  $t_m^+$  line indicates the end of the crossover between the bad insulator and the Mott phase as the growing interaction has less and less effect on the magnetic fluctuations period (reaching the atomic limit).



# Valence fluctuations

Introduction

Methods

Results and discussion

Evolution of timescales through the phase diagram

Adiabatic spin response

Conclusio

Références



Figure 15 – Schematic representation of a site

coupled to a bath

associated with the valence history using the DMFT hybridization function  $\Delta(i\omega_n)$ 

One can define the **timescale** 

$$t_{hyb} = -\frac{1}{\lim_{i\omega_n \to 0} \Im \Delta(i\omega_n)} \quad (6)$$

How do the two different timescales compare?



# Magnetic screening vs valence fluctuations



Results and discussion

Evolution of timescales through the phase diagram

Adiabatic spin response

Conclusio

Références



Figure 16 – Heatmap of the ratio between  $t_m$  and  $t_{hyb}$  in the DMFT phase diagram of the Hubbard model

- $t_m/t_{hyb} < 1$  : Magnetic fluctuations faster than valence fluctuations.
- $t_m/t_{hyb} > 1$ : Magnetic fluctuations slower than valence fluctuations.
- Mott phase : No valence fluctuations, t<sub>m</sub> ≪ t<sub>hyb</sub>
- Low interaction and/or high temperature :  $t_m < t_{hyb}$
- Appearance of a dome where t<sub>hyb</sub> > t<sub>m</sub> : valence fluctuations faster than magnetic fluctuations (adiabatic spin response).



### Introduction

Methods

Results and discussion

Conclusion

Référence

### Methods

The Hubbard model on the Bethe lattice DMFT on the Bethe lattice Magnetic susceptibility

### 3 Results and discussion

Evolution of timescales through the phase diagram Adiabatic spin response



- Methods
- Results and discussion
- Conclusion Références

- We provided a new insight into the phase diagram of the Hubbard model through the lens of spin dynamics.
- We identified a **new crossover line** within the Fermi liquid phase with a region with preponderant local moment
- We identified a regime in which the spin dynamics is adiabatic







References

- Introduction
- Methods
- Results and discussion
- Conclusion
- Références

- (1) Vučičević, J.; Terletska, H.; Tanasković, D.; Dobrosavljević, V. *Physical Review B* **2013**, *88*, Publisher : American Physical Society, 075143.
- (2) Chalupa, P.; Schäfer, T.; Reitner, M.; Springer, D.; Andergassen, S.; Toschi, A. *Physical Review Letters* **2021**, *126*, Publisher : American Physical Society, 056403.
- (3) Stepanov, E. A.; Brener, S.; Harkov, V.; Katsnelson, M. I.; Lichtenstein, A. I. *arXiv* :2106.12462 [cond-mat] **2021**, arXiv : 2106.12462.
- (4) Dasari, N.; Vidhyadhiraja, N. S.; Jarrell, M.; McKenzie, R. H. *Physical Review B* **2017**, *95*, Publisher : American Physical Society, 165105.
- (5) Toschi, A.; Capone, M.; Castellani, C.; Held, K. *Physical Review Letters* **2009**, *102*, Publisher : American Physical Society, 076402.
- (6) Gaspard, L.; Tomczak, J. M. Timescale of local moment screening across and above the Mott transition, 2021.