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Part 1: Targeting doubly-excited states

with coupled cluster



Coupled-cluster

I One of the most successful approaches for the description of chemical systems.
I CC ansatz (exponential excitation operator of a single-determinant reference):

|Ψ〉 = e
T̂ |Φ〉 , (1)

I The cluster operator involves singles, doubles... excitations:

T̂n =
1

(n!)2

∑
ij ...

∑
ab...

t
ab...
ij ... c

†
ac
†
b . . . cjci , (2)

I The CC equations are solved by projection:

ECC = 〈Φ|H̄|Φ〉 (3a)

0 = 〈Φa
i |H̄|Φ〉 , (3b)

I where the e�ective (non-Hermitian) similarity-transformed Hamiltonian is

H̄ = e
−T̂

Ĥe
T̂ . (4)



Excited states with coupled-cluster methods

Approach 1:

I Equation-of-motion formalism, starting from a ground-state coupled cluster wave

function

I Well-de�ned, black box, established approach, though biased towards the ground

state

Approach 2:

I Solve ground-state coupled cluster equations for higher-lying roots or starting from

state-speci�c reference wave functions

I Demands much more care: choice of reference, unphysical solutions, algorithms. In

principle more balanced and possibly cheaper



Paired coupled cluster doubles (pCCD)

pCCD: excitation manifold restricted to the paired double excitations

I pCCD and doubly-occupied con�guration interaction (DOCI) ground state energies

are very close (pCCD has polynomial scaling, DOCI has exponential)

I pCCD does a good job in recovering static correlation

I Minimal CC model for describing doubly-excited states



Goals

1. How to target excited states with pCCD?

System: helium atom

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H4 molecule

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules

F. Kossoski, A. Marie, A. Scemama, M. Ca�arel, P.-F. Loos, J. Chem. Theory Comput. 17, 4756 (2021)



pCCD

I Usual exponential ansatz

|Ψ〉 = e
T̂ |Φ〉

I the excitation operator is

T̂ =
∑
ia

t
a
i P
†
aPi

I the singlet paired operators are

P
†
q = c

†
qαc
†
qβ

I Substitution into the Schroedinger equation leads to

E = 〈Φ|e−T̂HeT̂ |Φ〉
0 = 〈Φ|P†i Pae

−T̂
He

T̂ |Φ〉



pCCD t-amplitudes

I Equation for the energy

E = 〈Φ|H|Φ〉+
∑
ia

t
a
i v

ii
aa

I k = nO × nV polynomial equations for the t-amplitudes

r
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∑
b

v
aa
bbt

b
i +

∑
j

v
jj
ii t

a
j +

∑
jb

v
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bbt

a
j t

b
i = 0

f
p
q is an element of the Fock operator and

v
pq
rs = 〈φpφq|Vee |φrφs〉 is a two-electron integral.



pCCD z-amplitudes

I We introduce the de-excitation operator

Ẑ =
∑
ia

z
i
aP
†
i Pa

I Ẽ = 〈Φ|(1 + Ẑ )e−T̂HeT̂ |Φ〉 leads to k linear equations for the z-amplitudes
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I ∂Ẽ/∂z ia = 0→ eq. for the t-amplitudes; ∂Ẽ/∂tai = 0→ eq. for the z-amplitudes



He, 6-31G
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I Residual equation and its integral, as a

function of the single t-amplitude

I Usual algorithm cannot �nd the

excited state solution

I Information about the curvature is

required: Jacobian



Solving the CC equations

I Newton-Raphson algorithm:

t
a
i ← t

a
i −

∑
jb

(J)−1ia,jbr
b
j

I For the ground state, a constant diagonal approximation is �ne,

Jia,ia =
∂rai
∂tai
≈ 2(f aa − f

i
i )

I But for excited states, the Jacobian is required. The (t-dependent) diagonal

Jacobian usually works,

Jia,ia = 2f aa − 2f ii −4v iaia + 2v iaai + v
aa
aa + v

ii
ii −

∑
j

v
aa
jj t

a
j −

∑
b

v
bb
ii t

b
i

I Extra computational burden lies in memory, not so much in time.



Goals

1. How to target excited states with pCCD?

System: helium atom

Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H4 molecule

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules



H4, STO-6G
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I HF-pCCD (dashed) vs.

DOCI(HF) (points)

I Results match for ground state, but not for

excited states

I Two solutions for �rst and third

doubly-excited states



Goals

1. How to target excited states with pCCD?

System: helium atom

Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H4 molecule

Very badly.

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules



He, 6-31G, orbital optimization
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I Each state is variationally optimized

with di�erent references:

I Ground state: κ = 0.12 degrees

I Doubly-excited state: κ = 87.8 degrees



Orbital optimization

I The orbital rotations are introduced by eκ̂, where κ̂ encompasses all unique

rotations,

κ̂ =
∑
p>q

κpq(c†p↑cq↑ − c
†
q↑cp↑ + c

†
p↓cq↓ − c

†
q↓cp↓).

I The energy can be expressed as a functional of the orbital rotation parameters κpq,

Ẽ (κ̂) = 〈Φ|(1 + Ẑ )e−T̂ e−κ̂Ĥe
κ̂
e
T̂ |Φ〉.

I Stationary points with respect to κpq can be found with the Newton-Raphson

method. The energy is expanded to second order around κ = 0,

Ẽ (κ) ≈ Ẽ (0) + g · κ +
1

2
κ† ·H · κ,

I and the orbital rotation vector is taken as

κ = −H−1 · g .



How to run oo-pCCD?

Orbital-optimized pCCD for excited states

Excited-state pCCD

t← t− J−1 · r
Density matrices

γ & Γ

Orbital gradient
and Hessian

g & HNewton-Raphson

κ = −H−1 · g

Orbital rotation

C ← C. exp(−κ)



H4, STO-6G
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H4, STO-6G
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I oo-pCCD (solid) vs.

DOCI(oo-pCCD) (points)

I Results match for all states

I One single and real solution for each state

I In HF-pCCD, important higher-order

connected excitations are missing (specially

the connected quadruples)

I In oo-pCCD, they are mostly recovered

with the optimized reference wave function

I Importance of orbital relaxation!



H4, STO-6G
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I Di�erences between pCCD

and DOCI energies, computed

with either HF (dashed) or

state speci�c oo (solid)

I Massive improvement with

orbital optimization

I DOCI and oo-pCCD do

provide comparable excited

states energies, as long as the

references are suitable



Goals

1. How to target excited states with pCCD?

System: helium atom

Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H4 molecule

Very badly.

Very well, but only at the oo-pCCD level.

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules



Larger molecules

I Set of 5 molecules: CH+, BH, nitroxyl, nitrosomethane, and formaldehyde

I 6-31+G(d) basis set, frozen core



Larger molecules

Vertical Excitation Energies (∆E , in eV) for the First Doubly-Excited States

molecule method ∆E

CH+ HF-pCCD 7.90

∆oo-pCCD 8.32

FCI 8.51

EOM-CCSDTQ 8.51

EOM-CCSDT 8.58

CC3 8.74

molecule method ∆E

BH HF-pCCD 10.83

∆oo-pCCD 7.35

FCI 7.11

EOM-CCSDTQ 7.11

EOM-CCSDT 7.14

CC3 7.29



Larger molecules

Vertical Excitation Energies (∆E , in eV) for the First Doubly-Excited States

molecule method ∆E

HNO HF-pCCD 5.53

∆oo-pCCD 4.49

FCI a 4.51

EOM-CCSDTQ a 4.54

EOM-CCSDT a 4.81

CC3 a 5.28

a J. Chem. Theory Comput. 15, 1939 (2019)

molecule method ∆E

H3C�NO ∆oo-pCCD 4.66

FCI a 4.86

EOM-CCSDT a 5.26

CC3 a 5.73

H2C��O ∆oo-pCCD 11.26

FCI a 10.86

EOM-CCSDTQ a 10.87

EOM-CCSDT a 11.10

CC3 a 11.49



Larger molecules

Variationally optimized orbitals at the pCCD level, for the ground (bottom) and the

doubly-excited (top) states of formaldehyde.



Larger molecules

Root-mean square error (RMSE), maximum

absolute error (MAE), and maximum signed

error (MSE), with respect to FCI results.

method RMSE MAE MSE

∆oo-pCCD 0.24 0.21 0.05

EOM-CCSDT 0.25 0.21 0.21

CC3 0.61 0.54 0.54
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I ∆oo-pCCD ∼ EOM-CCSDT > CC3
I Alternative method for targeting doubly-excited states
I Correlations e�ects are more balanced in ∆oo-pCCD



Goals

1. How to target excited states with pCCD?

System: helium atom

Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H4 molecule

Very well, but only at the oo-pCCD level.

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules

Yes, quite accurately, but only at the oo-pCCD level.

F. Kossoski, A. Marie, A. Scemama, M. Ca�arel, P.-F. Loos, J. Chem. Theory Comput. 17, 4756 (2021)



Quantum Package

I https://quantum-package.readthedocs.io/en/master/

I https://github.com/kossoski/qp_plugins_kossoski

I An open-source environment for the development of new quantum chemistry

methods

I E�cient selected con�guration interaction algorithm, can provide near-exact

absolute and excitation energies

https://quantum-package.readthedocs.io/en/master/
https://github.com/kossoski/qp_plugins_kossoski


Variational coupled cluster

Variational coupled cluster for ground and excited states

A. Marie, F. Kossoski, P.-F. Loos, J. Chem. Phys. 155, 104105 (2021).



Part 2: Con�guration interaction with excitation degree

and seniority number



CI with excitation degree
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CI with seniority number
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CI with seniority number
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CI with seniority number
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CI with seniority number
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CI with seniority number
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CI with excitation degree
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CI with excitation degree
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CI with excitation degree
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CI with excitation degree
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CI with excitation degree
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CI with seniority number
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CI with seniority number
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CI with seniority number
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CI with seniority number
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CI with seniority number
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CI with excitation degree and seniority number

A new CI hierarchy: CIo

o =
d + Ω/2

2

d : excitation degree

Ω: seniority number

o: order of the determinant



Motivation for new CI hierarchy

1st motivation: physical

CI with excitation degree quickly recovers dynamic correlation

CI with seniority number performs well for static correlation

CIo aims at accounting for most of both

2nd motivation: empirical

Any well-de�ned truncation scheme is valid.

Is CIo e�ective?



CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number

  

d/ΩΩ 0 2 4 6 8

0

1

2

3 CIo2.5

4

5

6



CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number

  

d/ΩΩ 0 2 4 6 8

0 1

1 ov

2 ov ov(o+v) o2v2

3 o2v2

4 o2v2

5

6



CI with excitation degree and seniority number
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CI with excitation degree and seniority number
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CI with excitation degree and seniority number

3rd motivation: computational

All types of determinants having the same scaling belong to the same CIo sector

CIS CIo1 ov

- CIo1.5 ov(o + v)
CISD CIo2 o2v2

- CIo2.5 o2v2(o + v)
CISDT CIo3 o3v3
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Summary

Targeting doubly-excited states with coupled cluster

I Finding excited states require tailored algorithms

I Nice features of pCCD still holds for doubly-excited states

I ∆oo-pCCD model provides accurate excitation energies of doubly-excited states

Con�guration interaction with seniority number and excitation degree

I Novel CI hierarchy: CIo

I Physical, empirical, and computational motivations for CIo

I Promising results for ground state potential energy curves



Perspectives

I How about orbital optimized CIo? How much does it improve wrt to traditional CI?

I How about excited states? And avoided crossings?

I How about strongly correlated systems?

I How to extend these ideas to multireference CI and Coupled-cluster?



Thank you!


