

European Research Council Established by the European Commission Laboratoire de Chimie et Physique Quantiques

Exploiting the seniority number in calculations of molecular excited states

Fábris Kossoski

12/01/2022

Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

https://lcpq.github.io/pterosor

PTEROSOR has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

Part 1: Targeting doubly-excited states with coupled cluster

One of the most successful approaches for the description of chemical systems.
 CC ansatz (exponential excitation operator of a single-determinant reference):

$$\left|\Psi
ight
angle=e^{\,\hat{ au}}\left|\Phi
ight
angle,$$
 (1)

▶ The cluster operator involves singles, doubles... excitations:

$$\hat{T}_n = \frac{1}{(n!)^2} \sum_{ij\ldots} \sum_{ab\ldots} t^{ab\ldots}_{ij\ldots} c^{\dagger}_a c^{\dagger}_b \ldots c_j c_i, \qquad (2)$$

The CC equations are solved by projection:

$$E_{\rm CC} = \langle \Phi | \bar{H} | \Phi \rangle$$
 (3a)

$$0 = \langle \Phi_i^a | \bar{H} | \Phi \rangle, \qquad (3b)$$

where the effective (non-Hermitian) similarity-transformed Hamiltonian is

$$\bar{H} = e^{-\hat{T}}\hat{H}e^{\hat{T}}.$$
 (4)

Approach 1:

- Equation-of-motion formalism, starting from a ground-state coupled cluster wave function
- Well-defined, black box, established approach, though biased towards the ground state

Approach 2:

- Solve ground-state coupled cluster equations for higher-lying roots or starting from state-specific reference wave functions
- Demands much more care: choice of reference, unphysical solutions, algorithms. In principle more balanced and possibly cheaper

pCCD: excitation manifold restricted to the paired double excitations

- pCCD and doubly-occupied configuration interaction (DOCI) ground state energies are very close (pCCD has polynomial scaling, DOCI has exponential)
- pCCD does a good job in recovering static correlation
- Minimal CC model for describing doubly-excited states

1. How to target excited states with pCCD?

System: helium atom

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H_4 molecule

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules

F. Kossoski, A. Marie, A. Scemama, M. Caffarel, P.-F. Loos, J. Chem. Theory Comput. 17, 4756 (2021)

pCCD

Usual exponential ansatz

$$|\Psi
angle=e^{\,\hat{\mathcal{T}}}|\Phi
angle$$

the excitation operator is

$$\hat{T} = \sum_{ia} t_i^a P_a^\dagger P_i$$

the singlet paired operators are

$$P^{\dagger}_{m{q}}=c^{\dagger}_{m{q}lpha}c^{\dagger}_{m{q}eta}$$

Substitution into the Schroedinger equation leads to

$$E = \langle \Phi | e^{-\hat{T}} H e^{\hat{T}} | \Phi \rangle$$
$$0 = \langle \Phi | P_i^{\dagger} P_a e^{-\hat{T}} H e^{\hat{T}} | \Phi \rangle$$

Equation for the energy

$$\Xi = \langle \Phi | H | \Phi
angle + \sum_{i a} t^a_i v^{ii}_{aa}$$

▶ $k = n_O \times n_V$ polynomial equations for the *t*-amplitudes

$$r_{i}^{a} = v_{ii}^{aa} + 2\left(f_{a}^{a} - f_{i}^{i} - \sum_{j} v_{aa}^{jj} t_{j}^{a} - \sum_{b} v_{bb}^{ii} t_{i}^{b}\right) t_{i}^{a}$$
$$- 2\left(2v_{ia}^{ia} - v_{ai}^{ia} - v_{aa}^{ii} t_{i}^{a}\right) t_{i}^{a}$$
$$+ \sum_{b} v_{bb}^{aa} t_{i}^{b} + \sum_{j} v_{ii}^{jj} t_{j}^{a} + \sum_{jb} v_{bb}^{jj} t_{j}^{a} t_{i}^{b} = 0$$

 f_q^p is an element of the Fock operator and $v_{rs}^{pq} = \langle \phi_p \phi_q | V_{ee} | \phi_r \phi_s \rangle$ is a two-electron integral.

pCCD t-amplitudes

We introduce the de-excitation operator

$$\hat{Z} = \sum_{ia} z_a^i P_i^\dagger P_a$$

pCCD z-amplitudes

• $\tilde{E} = \langle \Phi | (1 + \hat{Z}) e^{-\hat{T}} H e^{\hat{T}} | \Phi \rangle$ leads to k linear equations for the z-amplitudes

$$0 = v_{aa}^{ii} + 2\left(f_{a}^{a} - f_{i}^{i} - \sum_{j} v_{aa}^{jj} t_{j}^{a} - \sum_{b} v_{bb}^{ii} t_{i}^{b}\right) z_{a}^{i}$$
$$- 2\left(2v_{ia}^{ia} - v_{ai}^{ai} - v_{aa}^{ii} t_{i}^{a}\right) z_{a}^{i} - 2v_{aa}^{ii}\left(\sum_{j} z_{a}^{j} t_{j}^{a} + \sum_{b} z_{b}^{i} t_{i}^{b}\right)$$
$$+ \sum_{b} v_{aa}^{bb} z_{b}^{i} + \sum_{j} v_{jj}^{ii} z_{a}^{j} + \sum_{jb} t_{j}^{b} (v_{bb}^{ii} z_{a}^{j} + v_{aa}^{jj} z_{b}^{i})$$

▶ $\partial \tilde{E} / \partial z_a^i = 0 \rightarrow \text{eq.}$ for the *t*-amplitudes; $\partial \tilde{E} / \partial t_i^a = 0 \rightarrow \text{eq.}$ for the *z*-amplitudes

- Residual equation and its integral, as a function of the single t-amplitude
- Usual algorithm cannot find the excited state solution
- Information about the curvature is required: Jacobian

Newton-Raphson algorithm:

$$t_i^a \leftarrow t_i^a - \sum_{jb} (\boldsymbol{J})_{ia,jb}^{-1} r_j^b$$

> For the ground state, a constant diagonal approximation is fine,

$$J_{ia,ia} = \frac{\partial r_i^a}{\partial t_i^a} \approx 2(f_a^a - f_i^i)$$

 But for excited states, the Jacobian is required. The (t-dependent) diagonal Jacobian usually works,

$$J_{ia,ia} = 2f_a^a - 2f_i^i - 4v_{ia}^{ia} + 2v_{ai}^{ia} + v_{aa}^{aa} + v_{ii}^{ii} - \sum_j v_{jj}^{aa} t_j^a - \sum_b v_{ii}^{bb} t_i^b$$

Extra computational burden lies in memory, not so much in time.

1. How to target excited states with pCCD?

System: helium atom Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H_4 molecule

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules

- HF-pCCD (dashed) vs. DOCI(HF) (points)
- Results match for ground state, but not for excited states
- Two solutions for first and third doubly-excited states

1. How to target excited states with pCCD?

System: helium atom Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H_4 molecule Very badly.

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules

He, 6-31G, orbital optimization

- Each state is variationally optimized with different references:
- Ground state: $\kappa = 0.12$ degrees
- Doubly-excited state: $\kappa = 87.8$ degrees

The orbital rotations are introduced by $e^{\hat{\kappa}}$, where $\hat{\kappa}$ encompasses all unique rotations,

$$\hat{\kappa} = \sum_{p > q} \kappa_{pq} (c^{\dagger}_{p\uparrow} c_{q\uparrow} - c^{\dagger}_{q\uparrow} c_{p\uparrow} + c^{\dagger}_{p\downarrow} c_{q\downarrow} - c^{\dagger}_{q\downarrow} c_{p\downarrow}).$$

The energy can be expressed as a functional of the orbital rotation parameters κ_{pq} ,

$$ilde{E}(\hat{\kappa}) = \langle \Phi | (1+\hat{Z}) e^{-\hat{T}} e^{-\hat{\kappa}} \hat{H} e^{\hat{\kappa}} e^{\hat{T}} | \Phi
angle.$$

Stationary points with respect to κ_{pq} can be found with the Newton-Raphson method. The energy is expanded to second order around $\kappa = \mathbf{0}$,

$$ilde{E}(oldsymbol{\kappa})pprox ilde{E}(oldsymbol{0})+oldsymbol{g}\cdotoldsymbol{\kappa}+rac{1}{2}oldsymbol{\kappa}^{\dagger}\cdotoldsymbol{H}\cdotoldsymbol{\kappa},$$

and the orbital rotation vector is taken as

$$\kappa = -H^{-1} \cdot g$$
.

How to run oo-pCCD?

H₄, STO-6G

H₄, STO-6G

- oo-pCCD (solid) vs.
 DOCI(oo-pCCD) (points)
- Results match for all states
- One single and real solution for each state
- In HF-pCCD, important higher-order connected excitations are missing (specially the connected quadruples)
- In oo-pCCD, they are mostly recovered with the optimized reference wave function
- Importance of orbital relaxation!

H₄, STO-6G

- Differences between pCCD and DOCI energies, computed with either HF (dashed) or state specific oo (solid)
- Massive improvement with orbital optimization
- DOCI and oo-pCCD do provide comparable excited states energies, as long as the references are suitable

1. How to target excited states with pCCD?

System: helium atom Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H_4 molecule Very badly. Very well, but only at the oo-pCCD level.

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules

Set of 5 molecules: CH⁺, BH, nitroxyl, nitrosomethane, and formaldehyde
 6-31+G(d) basis set, frozen core

Vertical Excitation Energies (ΔE , in eV) for the First Doubly-Excited States

molecule	method	ΔE	molecule	method	ΔE
CH ⁺	HF-pCCD	7.90	BH	HF-pCCD	10.83
	Δoo-pCCD	8.32		Δoo-pCCD	7.35
	FCI	8.51		FCI	7.11
	EOM-CCSDTQ	8.51		EOM-CCSDTQ	7.11
	EOM-CCSDT	8.58		EOM-CCSDT	7.14
	CC3	8.74		CC3	7.29

Vertical Excitation Energies (ΔE , in eV) for the First Doubly-Excited States

				molecule	method	ΔE
	molecule	method	ΔE	H ₃ C-NO	Δoo-pCCD	4.66
	HNO	HF-pCCD	5.53		FCI ^a	4.86
		Δoo-pCCD	4.49		EOM-CCSDT ^a	5.26
		FCI ^a	4.51		CC3 ^a	5.73
		EOM-CCSDTQ ^a	4.54	$H_2C=O$	Δoo-pCCD	11.26
		EOM-CCSDT	4.81		FCI ^a	10.86
		CC3 ^a	5.28		EOM-CCSDTQ ^a	10.87
					EOM-CCSDT ^a	11.10
aJ.	Chem. Theo	ory Comput. 15, 1939 (3	2019)		CC3 ^a	11.49

Larger molecules

Variationally optimized orbitals at the pCCD level, for the ground (bottom) and the doubly-excited (top) states of formaldehyde.

Larger molecules

Root-mean square error (RMSE), maximum absolute error (MAE), and maximum signed error (MSE), with respect to FCI results.

method	RMSE	MAE	MSE
Δoo-pCCD	0.24	0.21	0.05
EOM-CCSDT	0.25	0.21	0.21
CC3	0.61	0.54	0.54

- $\Delta oo-pCCD \sim EOM-CCSDT > CC3$
- Alternative method for targeting doubly-excited states
- Correlations effects are more balanced in Δοο-pCCD

1. How to target excited states with pCCD?

System: helium atom Tailored algorithms are needed.

2. How do pCCD and DOCI compare for excited states?

System: symmetric stretching of the linear H_4 molecule Very well, but only at the oo-pCCD level.

3. Can pCCD describe doubly-excited states without EOM?

System: larger molecules

Yes, quite accurately, but only at the oo-pCCD level.

F. Kossoski, A. Marie, A. Scemama, M. Caffarel, P.-F. Loos, J. Chem. Theory Comput. 17, 4756 (2021)

Quantum Package

- https://quantum-package.readthedocs.io/en/master/
- https://github.com/kossoski/qp_plugins_kossoski
- An open-source environment for the development of new quantum chemistry methods
- Efficient selected configuration interaction algorithm, can provide near-exact absolute and excitation energies

Variational coupled cluster for ground and excited states

A. Marie, F. Kossoski, P.-F. Loos, J. Chem. Phys. 155, 104105 (2021).

Part 2: Configuration interaction with excitation degree and seniority number

d	
0	
1	
2	
3	

d	
0	HF
1	
2	
3	

d	
0	
1	CIS
2	
3	

CI with seniority number

Ω	0	2	4	6

Ω	0	2	4	6
	CIΩ0			

Ω	0	2	4	6
		CIΩ2		

Ω	0	2	4	6
			CIΩ4	

Ω	0	2	4	6
				CIΩ6

Motivation for new CI hierarchy

1st motivation: physical

Cl with excitation degree quickly recovers dynamic correlation Cl with seniority number performs well for static correlation Clo aims at accounting for most of both

2nd motivation: empirical

Any well-defined truncation scheme is valid. Is Clo effective?

d/Ω	0	2	4	6	8
0	1				
1		ον			
2	ον	ov(o+v)	O ² V ²		
3		O ² V ²			
4	O ² V ²				
5					
6					

d/Ω	0	2	4	6	8
0	1				
1		ον			
2	ον	ov(o+v)	O ² V ²		
3		O ² V ²	0 ² V ² (0+V)		
4	O ² V ²	0 ² V ² (0+V)			
5					
6					

d/Ω	0	2	4	6	8
0	1				
1		ον			
2	ον	ov(o+v)	O ² V ²		
3		O ² V ²	0 ² V ² (0+V)	O³V ³	
4	O ² V ²	0 ² V ² (0+V)	O ³ V ³		
5		O ³ V ³			
6	O ³ V ³				

3rd motivation: computational

All types of determinants having the same scaling belong to the same Clo sector

CIS	Clo1	ov
-	Clo1.5	ov(o+v)
CISD	Clo2	$o^2 v^2$
-	Clo2.5	$o^2 v^2 (o + v)$
CISDT	Clo3	$o^3 v^3$

HF/cc-pvdz

Be₂/cc-pvtz

Be₂/cc-pvtz

Targeting doubly-excited states with coupled cluster

- Finding excited states require tailored algorithms
- Nice features of pCCD still holds for doubly-excited states
- \blacktriangleright Δ oo-pCCD model provides accurate excitation energies of doubly-excited states

Configuration interaction with seniority number and excitation degree

- Novel CI hierarchy: Clo
- Physical, empirical, and computational motivations for Clo
- Promising results for ground state potential energy curves

- ► How about orbital optimized Clo? How much does it improve wrt to traditional Cl?
- How about excited states? And avoided crossings?
- How about strongly correlated systems?
- How to extend these ideas to multireference CI and Coupled-cluster?

Thank you!