

Ab-initio description of monopole resonances in light- and medium-mass nuclei

Preliminary results

Andrea Porro, PhD Student IRFU, CEA, Université Paris-Saclay

January 11, 2022 GDR nBody General Meeting, Toulouse

Outline

Outline

Dual nature of nucleus

- single-particle features
- collective behaviour

Dual nature of nucleus

Giant Resonances (GRs)

- single-particle features
- collective behaviour

clearest manifestation of **collective motion**

Dual nature of nucleus

Giant Resonances (GRs)

- single-particle features
- collective behaviour

5

clearest manifestation of collective motion

decomposed in terms of angular momentum L

L=2

T=0

Ν

T=1

Dual nature of nucleus

Giant Resonances (GRs)

- single-particle features
- collective behaviour

clearest manifestation of collective motion

trees

Dual nature of nucleus

Giant Resonances (GRs)

- single-particle features
- collective behaviour

clearest manifestation of collective motion

Dual nature of nucleus

Giant Resonances (GRs)

3

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

- Renewed experimental interest
- Investigate new physics

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

- Renewed experimental interest
- Investigate new physics

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

- Renewed experimental interest
- Investigate new physics

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

- Renewed experimental interest
- Investigate new physics

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

- Renewed experimental interest
- Investigate new physics

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

- Renewed experimental interest
- Investigate new physics

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

Why studying again GMR?

- Renewed experimental interest
- Investigate new physics

Much is still to be understood !

- No systematic studies (EDF as well)
 - Very generic numerical codes needed
- Ab-initio description still seminal

Isoscalar Giant Monopole Resonance (ISGMR)

What is it ?

- Collective excitation (breathing mode)
- Involving most if not all the nucleons
- Coherent particle-hole excitations

Why studying again GMR?

- Renewed experimental interest
- Investigate new physics

Much is still to be understood !

- No systematic studies (EDF as well)
 - Very generic numerical codes needed
- Ab-initio description still seminal

Outline

Theoretical Frame

Ab-initio methods

Ab-initio methods have previously been introduced

(see V. Somà's and P. Demol's talks)

Theoretical Frame

Ab-initio methods

Ab-initio methods have previously been introduced (see V. Somà's and P. Demol's talks)

GMR has historically been studied within EDF theory [Garg, Colò, 2018]

Ab-initio unicum: (Q)RPA for spherical systems

[Papakonstantinou et al., 2007] ... [Roth et al., 2021] Theoretical Frame

Ab-initio methods

Ab-initio methods have previously been introduced (see V. Somà's and P. Demol's talks)

GMR has historically been studied within EDF theory [Garg, Colò, 2018]

Ab-initio unicum: (Q)RPA for spherical systems

[Papakonstantinou et al., 2007] ... [Roth et al., 2021]

Present goal: First systematic ab-initio study of the GMR

- **PGCM** Projected GCM, superfluid version of NOCI
- **QRPA** Superfluid version of RPA

Schrödinger equation

$$H |\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$$

Schrödinger equation

PGCM

 $H |\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$

$$|\Psi_{\nu}\rangle \equiv \sum_{r^2,q} f_{\nu}(r^2,q) |\Phi(r^2,q)\rangle$$

r² to study GMR q to couple to other modes Symmetry breaking and restoration Variational method

Schrödinger equation **PGCM** $|\Psi_{\nu}\rangle \equiv \sum_{r^{2},q} f_{\nu}(r^{2},q) |\Phi(r^{2},q)\rangle$

r² to study GMR **q** to couple to other modes **Symmetry** breaking and **restoration Variational** method

$$H |\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$$

QRPA
 $|\Psi_{\nu}\rangle \equiv Q_{\nu}^{\dagger} |\Psi_{0}\rangle$
Boson-like excitation operator

Boson-like excitation operators Q_{ν}^{\dagger} QRPA matrix diagonalization QFAM formulation frequencies $\mathbb C$

Schrödinger equation $\begin{array}{c} \mathbf{PGCM} \\ |\Psi_{\nu}\rangle \equiv \sum_{r^{2},q} f_{\nu}(r^{2},q) |\Phi(r^{2},q)\rangle \end{array}$

r² to study GMR **q** to couple to other modes **Symmetry** breaking and **restoration Variational** method $H |\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$ QRPA $|\Psi_{\nu}\rangle \equiv Q_{\nu}^{\dagger} |\Psi_{0}\rangle$

Boson-like excitation operators Q_{ν}^{\dagger} QRPA matrix diagonalization QFAM formulation frequencies \mathbb{C}

Pros and Cons

Handle anharmonicities and shape coexistence Select on few collective coordinates Symmetries are restored Computationally expensive Harmonic limit of GCM [Brink, Weiguny, 1968]
All coordinates are explored
Symmetries are not restored
Low computational cost

Schrödinger equation $\begin{array}{c} \mathbf{PGCM} \\ |\Psi_{\nu}\rangle \equiv \sum_{r^{2},q} f_{\nu}(r^{2},q) |\Phi(r^{2},q)\rangle \end{array}$

r² to study GMR **q** to couple to other modes **Symmetry** breaking and **restoration Variational** method $H |\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$ QRPA $|\Psi_{\nu}\rangle \equiv Q_{\nu}^{\dagger} |\Psi_{0}\rangle$

Boson-like excitation operators Q_{ν}^{\dagger} QRPA matrix diagonalization QFAM formulation frequencies \mathbb{C}

Pros and Cons

Handle anharmonicities and shape coexistenceImage: CoexistenceHarmonic limit of GCM[Brink, Weiguny, 1968]Select on few collective coordinatesAll coordinates are exploredSymmetries are restoredSymmetries are not restoredSymmetries are restoredSymmetries are not restoredLow computational cost

First ab-initio realization very recently developed

- 1) PGCM (M. Frosini, CEA Saclay)
- 2) QFAM (Y. Beaujeault-Taudière, CEA DAM)

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

• Studied quantity: monopole strength

$$S_{\text{JM}=00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu}(r^2)\Psi_0\rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition ampartudes: height of peaks
- Energy difference: position of peaks

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \, \omega^k \, d\omega$ = $\sum_{\nu} (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2$ = $\langle \Psi_0 | \check{M}_k(i, j) | \Psi_0 \rangle$

[Bohigas et al., 1979]

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \,\omega^k \,d\omega$ $= \sum_{\nu} (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \longrightarrow \text{Must know excited states}$ $\equiv \langle \Psi_0 | \check{M}_k(i,j) | \Psi_0 \rangle$ [Bohigas et al., 1979]

200

150

100

50

 $S_{00} \ [fm^4MeV^{-1}]$

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \,\omega^k \,d\omega$ $= \sum_{\nu} (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \longrightarrow \text{Must know excited states}$ $\equiv \langle \Psi_0 | \check{M}_k(i,j) | \Psi_0 \rangle \longrightarrow \text{Ground state only} \text{[Bohigas et al., 1979]}$

200

150

100

50

S₀₀ [fm⁴MeV⁻¹]

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \,\omega^k \,d\omega$ $= \sum_{\nu} (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \longrightarrow \text{Must know excited states}$ $= \sum_{\nu} (\Psi_0 | \check{M}_k(i,j) | \Psi_0 \rangle \longrightarrow \text{Ground state only} \quad [Bohigas et al., 1979]$

200

150

100

50

 S_{00} [fm⁴MeV⁻¹]

Complexity is shifted to the operator structure

$$\begin{split} \breve{M}_k(i,j) &\equiv (-1)^i C_i C_j \quad \forall \ k \ge 0 \\ M_k(i,j) &\equiv \frac{1}{2} (-1)^i [C_i, C_j] \quad \text{if} \ k = 2n+1, \ n \in \mathbb{N} \end{split} \qquad \begin{array}{c} C_l &\equiv \begin{bmatrix} H, [H, \dots [H, [H, r^2]] \dots] \\ I \text{ times} \end{bmatrix} \end{split}$$

Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \, \omega^k \, d\omega$ 0 10 30 20 40 50 0 ω [MeV] $= \sum_{\nu} (E_{\nu} - E_{0})^{k} |\langle \Psi_{\nu} | r^{2} | \Psi_{0} \rangle|^{2} \longrightarrow \text{Must know excited states}$ $= \langle \Psi_{0} | \check{M}_{k}(i, j) | \Psi_{0} \rangle \longrightarrow \text{Ground state only} \text{IBobia}$ \longrightarrow Ground state only [Bohigas et al., 1979]

200

150

100

50

 m_0

 m_0

 S_{00} [fm⁴MeV⁻¹]

Complexity is shifted to the operator structure

$$\begin{split} \check{M}_{k}(i,j) &\equiv (-1)^{i}C_{i}C_{j} \quad \forall \ k \geq 0 \\ M_{k}(i,j) &\equiv \frac{1}{2}(-1)^{i}[C_{i},C_{j}] \text{ if } k = 2n+1, \ n \in \mathbb{N} \end{split} \qquad C_{l} &\equiv \begin{bmatrix}H, [H, ...[H, [H, r^{2}]]...]\end{bmatrix} \\ I \text{ times} \end{split}$$
Encode the main physical features of the strength
$$\begin{split} \bar{E}_{1} &= \frac{m_{1}}{m_{0}} \qquad \sigma^{2} = \frac{m_{2}}{m_{0}} - \left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0 \end{split}$$

• Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \,\omega^k \, d\omega$ $= \int_{\nu}^\infty (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \longrightarrow \text{Must know excited states}$ $= \langle \Psi_0 | \check{M}_k(i,j) | \Psi_0 \rangle \longrightarrow \text{Ground state only} \quad [Bohigas et al., 1979]$

200

150

100

50

 S_{00} [fm⁴MeV⁻¹]

Complexity is shifted to the operator structure

En

$$\begin{split} \breve{M}_{k}(i,j) &\equiv (-1)^{i}C_{i}C_{j} & \forall \ k \geq 0 \\ M_{k}(i,j) &\equiv \frac{1}{2}(-1)^{i}[C_{i},C_{j}] \text{ if } k = 2n+1, \ n \in \mathbb{N} \end{split} \qquad C_{l} &\equiv \begin{bmatrix}H, [H, ...[H, [H, r^{2}]]...]\end{bmatrix} \\ I \text{ times} \\ \hline \vec{E}_{1} &= \frac{m_{1}}{m_{0}} \qquad \sigma^{2} &= \frac{m_{2}}{m_{0}} - \left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0 \end{split}$$

First comparison ever of the two approaches !

Derived and implemented in an ab-initio PGCM code

Studied quantity: monopole strength

$$S_{00}(\omega) \equiv \sum_{\nu} |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega)$$

- Transition amplitudes: height of peaks
- Energy difference: position of peaks
- Related moments $m_k \equiv \int_0^\infty S_{00}(\omega) \, \omega^k \, d\omega$ $= \sum_{\nu} (E_{\nu} - E_0)^k |\langle \Psi_{\nu} | r^2 | \Psi_0 \rangle|^2$ Ground state only [Bohigas et al., 1979]

Complexity is shifted to the operator structure

$$\begin{split} \breve{M}_{k}(i,j) &\equiv (-1)^{i}C_{i}C_{j} & \forall \ k \geq 0 \\ M_{k}(i,j) &\equiv \frac{1}{2}(-1)^{i}[C_{i},C_{j}] \text{ if } k = 2n+1, \ n \in \mathbb{N} \end{split} \qquad \begin{array}{l} C_{l} &\equiv \begin{bmatrix} H, [H, ...[H, [H, r^{2}]]...] \end{bmatrix} \\ \hline l \text{ times} \\ \hline \bar{E}_{1} &= \frac{m_{1}}{m_{0}} & \sigma^{2} &= \frac{m_{2}}{m_{0}} - \left(\frac{m_{1}}{m_{0}}\right)^{2} \geq 0 \end{split}$$

First comparison ever of the two approaches !

Derived and implemented in an ab-initio PGCM code

Not discussed in the present talk

 m_0

8

Outline

Common features

PGCM and QFAM have **consistent numerical settings**

- One-body spherical harmonic oscillator basis
 - e_{max} = 10
 - ħω = 20 MeV
- Chiral two-plus-three-nucleon in-medium interaction
 - T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral twoplus three-nucleon interactions for accurate nuclear structure studies", *Phys. Lett. B*, 808, 2020
 - M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, "In-medium k-body reduction of n-body operators", *The European Physical Journal A*, *57*(4), 2021
- Only monopole strength is addressed
- The PGCM wavefunction explores the β_2 and r^2 collective coordinates (quadrupolar coupling)

Benchmark on existing spherical QRPA code

Difficulty

Benchmark on existing spherical QRPA code

Single spherical harmonic energy minimum

Exact QRPA/QFAM superposition

Monopole Strength 80 ^{16}O QFAM --- QRPA sph 60 S₀₀ [fm⁴MeV⁻¹] 40 20 0 10 20 30 40 50 0 ω [MeV]

12

Difficulty

Benchmark on existing spherical QRPA code

12

Difficulty

Benchmark on existing spherical QRPA code

(1) [Dowie et al., 2020]

(1) [Dowie et al., 2020]

(1) [Dowie et al., 2020] Monopole Strength 200 ²⁴Mg 1d ($\beta_2 = 0.00$) PGCM 1d ($\beta_2 = 0.55$) 150 2d prolate well S₀₀ [fm⁴MeV⁻¹] 2d both wells 100 50 00 20 30 40 10 50 ω [MeV]

• In PGCM low energy strength appears

Results

- Single spherical minimum
- In PGCM low energy strength appears
- Weak coupling with quadrupolar vibrations

Monopole Strength 100 PGCM ----¹⁶O ²⁰O 2d 80 S₀₀ [fm⁴MeV⁻¹] $^{20}O \ 1d \ (\beta_2 = 0.0)$ 60 40 20 0 20 30 40 0 10 50

 ω [MeV]

Results

- Single spherical minimum
- In PGCM low energy strength appears
- Weak coupling with quadrupolar vibrations
- Further investigations coupling pairing (Δ , r)

Outline

First **ab-initio** systematic description of GMR

Choose physics according to selected coordinates

No limitation on the nucleus choice

First **ab-initio** systematic description of GMR

Choose physics according to selected coordinates

No limitation on the nucleus choice

Plan of the complete study

- Static quadrupolar deformation
- Coupling to quadrupolar vibrations
- Shape isomers
- Theoretical comparison of moment computation
- Hamiltonian uncertainty through different chiral EFT orders
- Superfluidity (Oxygen isotopic chains, pairing variations)
- Bubble structure (³⁴Si and ³⁶S)
 - Nuclei of current experimental interest (⁶⁸Ni and ⁷⁰Ni)

First **ab-initio** systematic description of GMR

Choose physics according to selected coordinates

No limitation on the nucleus choice

Plan of the complete study

- 🗹 🛛 Static quadrupolar deformation
 - Coupling to quadrupolar vibrations
- Shape isomers
- Theoretical comparison of moment computation
- Hamiltonian uncertainty through different chiral EFT orders
- Superfluidity (Oxygen isotopic chains, pairing variations)
- Bubble structure (³⁴Si and ³⁶S)
 - Nuclei of current experimental interest (⁶⁸Ni and ⁷⁰Ni)

First **ab-initio** systematic description of GMR

Choose physics according to selected coordinates

No limitation on the nucleus choice

Plan of the complete study

- 🗹 🛛 Static quadrupolar deformation
- 🗹 Coupling to quadrupolar vibrations
- Shape isomers
- Theoretical comparison of moment computation
- Hamiltonian uncertainty through different chiral EFT orders
- Superfluidity (Oxygen isotopic chains, pairing variations)
- Bubble structure (³⁴Si and ³⁶S)
 - Nuclei of current experimental interest (⁶⁸Ni and ⁷⁰Ni)

First **ab-initio** systematic description of GMR

Choose physics according to selected coordinates

No limitation on the nucleus choice

Plan of the complete study

- 🗹 Static quadrupolar deformation
- 🚺 Coupling to quadrupolar vibrations
- 🗹 Shape isomers
- Theoretical comparison of moment computation
- Hamiltonian uncertainty through different chiral EFT orders
- Superfluidity (Oxygen isotopic chains, pairing variations)
- Bubble structure (³⁴Si and ³⁶S)
 - Nuclei of current experimental interest (⁶⁸Ni and ⁷⁰Ni)

Thanks for the attention

