
Andrea Porro, PhD Student
IRFU, CEA, Université Paris-Saclay

Ab-initio description of monopole 
resonances in light- and medium-mass nuclei
Preliminary results

January 11, 2022
GDR nBody General Meeting, Toulouse



Outline

Introduction

Formalism

Preliminary results

Conclusions



Outline

Introduction

Formalism

Preliminary results

Conclusions



Introduction and Motivation

Dual nature of nucleus

● single-particle features

● collective behaviour

3



Introduction and Motivation

Dual nature of nucleus

● single-particle features

● collective behaviour

Giant Resonances (GRs)

clearest manifestation of collective motion

Liquid drop picture
vibrations, oscillations

3



Introduction and Motivation

Dual nature of nucleus

● single-particle features

● collective behaviour

Giant Resonances (GRs)

clearest manifestation of collective motion

Liquid drop picture
vibrations, oscillations

decomposed in terms of angular momentum L

L=0

L=1

L=2

T=0 T=1

3



Introduction and Motivation

Dual nature of nucleus

● single-particle features

● collective behaviour

Giant Resonances (GRs)

clearest manifestation of collective motion

Liquid drop picture
vibrations, oscillations

Spherical
(no deformation)

decomposed in terms of angular momentum L

L=0

L=1

L=2

T=0 T=1

3



Introduction and Motivation

Dual nature of nucleus

● single-particle features

● collective behaviour

Giant Resonances (GRs)

clearest manifestation of collective motion

Liquid drop picture
vibrations, oscillations

Spherical
(no deformation)

decomposed in terms of angular momentum L

L=0

L=1

L=2

T=0 T=1

3



Introduction and Motivation

Dual nature of nucleus

● single-particle features

● collective behaviour

Giant Resonances (GRs)

clearest manifestation of collective motion

Liquid drop picture
vibrations, oscillations

Deformation
↓

Coupling between different L

Spheroidal
(deformed)

Prolate
(cigar type) 

Oblate
(pancake type) 

Spherical
(no deformation)

decomposed in terms of angular momentum L
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(see V. Somà’s and P. Demol’s talks)

Theoretical Frame
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GMR has historically been studied within EDF theory

Ab-initio unicum: (Q)RPA for spherical systems

Present goal: First systematic ab-initio study of the GMR

● PGCM Projected GCM, superfluid version of NOCI

● QRPA Superfluid version of RPA

[Garg, Colò, 2018]

[Papakonstantinou et al., 2007]
…

[Roth et al., 2021]



PGCM vs QRPA

7

Schrödinger equation



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistence

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

[Brink, Weiguny, 1968]



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistence

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

[Brink, Weiguny, 1968]



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistence

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

[Brink, Weiguny, 1968]



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistence

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

[Brink, Weiguny, 1968]



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

Handle anharmonicities and shape coexistence

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

[Brink, Weiguny, 1968]



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

First ab-initio realization very recently developed

Handle anharmonicities and shape coexistence

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

1) PGCM (M. Frosini, CEA Saclay) 

2) QFAM (Y. Beaujeault-Taudière, CEA DAM)

[Brink, Weiguny, 1968]



PGCM vs QRPA

7

Schrödinger equation

PGCM

r2 to study GMR

q to couple to other modes

Symmetry breaking and restoration

Variational method

First ab-initio realization very recently developed

Handle anharmonicities and shape coexistence

Select on few collective coordinates 

Symmetries are restored

Computationally expensive

Harmonic limit of GCM

All coordinates are explored

Symmetries are not restored

Low computational cost

QRPA

Boson-like excitation operators

QRPA matrix diagonalization

QFAM formulation frequencies ℂ

Pros and Cons

1) PGCM (M. Frosini, CEA Saclay) 

2) QFAM (Y. Beaujeault-Taudière, CEA DAM)

General implementation, can access

1. Doubly-closed-shell nuclei

2. Singly-open-shell nuclei

3. Doubly-open-shell nuclei

[Brink, Weiguny, 1968]
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● Studied quantity: monopole strength

● Transition amplitudes: height of peaks

● Energy difference: position of peaks

● Related moments

Must know excited states

Ground state only

Complexity is shifted to the operator structure

Encode the main physical features of the strength

First comparison ever of the two approaches !

Derived and implemented in an ab-initio PGCM code

[Bohigas et al., 1979]

Not discussed in the present talk
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Common features

10

PGCM and QFAM have consistent numerical settings

● One-body spherical harmonic oscillator basis

○ emax = 10

○ ħ⍵ = 20 MeV

● Chiral two-plus-three-nucleon in-medium interaction
○ T. Hüther, K. Vobig, K. Hebeler, R. Machleidt and R. Roth, "Family of chiral two-

plus three-nucleon interactions for accurate nuclear structure studies", Phys. 
Lett. B, 808, 2020

○ M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J.-P. Ebran and V. Somà, 
“In-medium k-body reduction of n-body operators”, The European Physical 
Journal A, 57(4), 2021

● Only monopole strength is addressed

● The PGCM wavefunction explores the β2 and r2 collective coordinates

(quadrupolar coupling)
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Deformation effects in 24Mg 

14

Difficulty Deformation

Shape coexistence ? (1)

Total Energy Surface EHFB(β2,r)

(1)  [Dowie et al., 2020]

iThemba, Bahini 2021

Monopole Strength

1. PGCM superior to QRPA

2. Experiments useful and promising

3. Data are not unambiguous

● Dominant prolate minimum

● Important static quadrupole deformation

● No coupling between different wells 

● Coupling to quadrupole fluctuation

● Important anharmonic effects QRPA unreliable



15

Singly-open shell nucleus

Superfluidity effects in 20O
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Difficulty Superfluidity

Total Energy Surface EHFB(β2,r) Monopole Strength

● Single spherical minimum

● In PGCM low energy strength appears 

● Weak coupling with quadrupolar vibrations

● Further investigations coupling pairing  (Δ , r)

● Inconsistency between QFAM and PGCM 16
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