

Institut Néel - CNRS Institut Laue Langevin

Computing low energy excitations in strongly correlated systems: RelaxSE

Elisa Rebolini² and Marie-Bernadette Lepetit^{1,2}

¹Institut Laue Langevin - 71 avenue des Martyrs - Grenoble - France ²Institut Néel - CNRS - 25 rue des Martyrs - Grenoble - France

GDR NBODY - Toulouse, Jan. 10th - 13th 2022

Magnetism at ILL

Incommensurate magnetic structure of CeCuGa₃ at 1.7 K investigated on D20 at ILL V. K. Anand *et al*, *Phys Rev B*, **104**, 174438, (2021)

Weakly correlated systems

- Band-structure / shell model valid
- Mean-field description qualitatively correct
- well treated in DFT-based methods (DFT, TDDFT, etc. ...)
- \bullet or single ref + perturbation-based methods (GW, Bethe-Salpeter, etc. \ldots)

Strongly correlated systems

Strongly correlated systems

Strongly correlated systems

- Expression of many degrees of freedom (spin, orbital, lattice...)
- Multiple quasi-degenerate GS highly sensitive to ext. pert.
- Low energy excited states
- Remarkable properties
 - high T_c superconductivity
 - magnetism
 - multiferroïcity
 - collossal magneto-resistance
 - . . .
- Properties originate in low energy excitations

Focus of the talk :

- magnetic systems
- computation of low energy excitations

Ab-initio determination of magnetic interactions

- Transition Metal Oxides (YMnO₃, $RMn_2O_5..$)
- Rare-Earth Oxides

Magnetic excitation : effective magnetic exchange

State of the art

Large Complete Active Space + single excitations (LCAS+S) LCAS+S

C J. Calzado and J. F. Sanz and J. P. Malrieu. J. Chem. Phys., 112, 5158, (2002)

CAS+Difference Dedicated Configuration Interaction (CAS+DDCI) CAS+DDCI

J. Miralles and J. P. Daudey and R. Caballol, Chem. Phys. Lett., 198, 555, (1992) V. M. García et al., Chem. Phys. Lett., 238, 222, (1995) V. M. García and M. Reguero and R. Caballol, Theor. Chem. Acc., 98, 50, (1997)

Systems of interest

128.9054 57	140.116 58 Call 110	140.9075 59	144.242 60	(145) 61	150.35 62	151.964 63 411	197.25 64	150.9253 65	163.500 66	164.0000 67	167.250 68 (mai 114	168.9342 69	172.054 70
Lanthane	Cee 3	Prastodyme	Nd	Pm Prosendelhaum	Sm ³	Eu ³	Gadolinium Nej et tenter	Tb Techaum	Dy .	Home	Er	Tm ¹	Yberbaan Vinetaan
(227) 89	222.0380 90	221.0258 91	220.0289 92	(227) ₁₃₆ 93	(241) _{1.31} 94	(242) 100 95	(247) 96	(247) 97	(#4) 98	(252) _{1 10} 99		(258)	(258)
Ac	<u>Th</u>	Pa	Unentam Incorrector	Np.	Pu ⁱ	Am.	Cm "	Bk.	Castomium	Es :	Fm	Md	No

Methodological approach

How to reach experimental accuracy?

- Embedded cluster (quantum, pseudo-potential and point charges) → finite systems
- State-of-the-art ab-initio calculations for strongly correlated systems

Challenges

Size of the problem growing exponentially with the number of open shells \leadsto computational wall

Magnetic excitation: effective magnetic exchange

WF requirements :

- multi configurational
- equal treatment for GS & exct. states
- \Rightarrow all previous conf. have to be included at 0th order (ref. conf.)
- screening effects have to be included on all ref. conf.
 - dynamical correlation
 - single-excitation on all ref. conf.
 - modify relative weight between ref. conf.
 - $\bullet\,\Rightarrow$ need to be in non-contracted CI

WF non-requirements : (vert. excitations only)

• common part of screening effects between GS & exct. states can be skipped

SASS : A. Gellé, J. Varignon and M.-B. Lepetit, EPL, 88, 37003 (2009).

All reference configurations need to be treated on equal footing

• Magnetic and bridging orb. \in CAS (Large Complete Active Space) \sim Impossible when number of magn. orb. increases

SASS : A. Gellé, J. Varignon and M.-B. Lepetit, EPL, 88, 37003 (2009).

All reference configurations need to be treated on equal footing

• Magnetic and bridging orb. \in CAS (Large Complete Active Space) \sim Impossible when number of magn. orb. increases

Physically relevant (large weight)

Physically irrelevant (very small weight)

SASS : A. Gellé, J. Varignon and M.-B. Lepetit, EPL, 88, 37003 (2009).

All reference configurations need to be treated on equal footing

• Magnetic and bridging orb. \in CAS (Large Complete Active Space) \sim Impossible when number of magn. orb. increases

Physically relevant (large weight)

Physically irrelevant (very small weight)

• Ref. conf. : only dominant conf. in LCAS : SAS+S Selected Active Space + Single-excitation from bridging orbitals

SASS : A. Gellé, J. Varignon and M.-B. Lepetit, EPL, 88, 37003 (2009).

SASS : A. Gellé, J. Varignon and M.-B. Lepetit, EPL, 88, 37003 (2009).

• Select the important configurations on the active (magnetic) orbitals (ref 0)

$$\begin{pmatrix} \downarrow & \downarrow \\ M: d \uparrow \downarrow & M': d \\ L: p \end{pmatrix} \longleftrightarrow \begin{pmatrix} \downarrow & \uparrow \\ M: d \uparrow \downarrow & M': d' \\ L: p \end{pmatrix}$$

SASS : A. Gellé, J. Varignon and M.-B. Lepetit, EPL, 88, 37003 (2009).

- Select the important configurations on the active (magnetic) orbitals (ref 0)
- From them: build the additional important configurations (metal/metal), (ligand-metal) and/or (metal-ligand) for the exchange mechanism (ref 1)
- + all conf. for S^2 eigenfunctions

SASS : A. Gellé, J. Varignon and M.-B. Lepetit, EPL, 88, 37003 (2009).

- Select the important configurations on the active (magnetic) orbitals (ref 0)
- From them: build the additional important configurations (metal/metal), (ligand-metal) and/or (metal-ligand) for the exchange mechanism (ref 1)
- + all conf. for S^2 eigenfunctions
- Screening from single excitations on the references

5 classes of orbitals:

occupied, active, virtual, ligand occupied and ligand virtual

5 classes of orbitals:

occupied, active, virtual, ligand occupied and ligand virtual

SAS+S

• The dominant magn. conf. : ref0

5 classes of orbitals:

occupied, active, virtual, ligand occupied and ligand virtual

- The dominant magn. conf. : ref0
- $\bullet~$ The magn. orb $\rightarrow~$ magn.orb excitations on ref0: ref1
- The ligand magn. site charge transferts on ref0: ref1

5 classes of orbitals:

occupied, active, virtual, ligand occupied and ligand virtual

- The dominant magn. conf. : ref0
- $\bullet\,$ The magn. orb $\rightarrow\,$ magn.orb excitations on ref0: ref1
- The ligand magn. site charge transferts on ref0: ref1

5 classes of orbitals:

occupied, active, virtual, ligand occupied and ligand virtual

- The dominant magn. conf. : ref0
- $\bullet~$ The magn. orb $\rightarrow~$ magn.orb excitations on ref0: ref1
- The ligand magn. site charge transferts on ref0: ref1
- The screening effects: all singles on ref0 + ref1

The RelaxSE code: Challenges

Memory

- Number of configurations (up to 10⁹)
- Hamiltonian matrix cannot be stored
- Iterative Davidson algorithm to compute the first eigenvalues and eigenvectors

Disk Access

- One- and two-electron integrals read from disk
- Optimize procedure to minimize the number of disk access (integral driven)

CPU/Total Time

- Iterative procedure: re-computation of (independent) vectors for each iteration
- Time consuming but massively parallelizable (determinant driven)

User Friendliness/Modularity

- Minimal input from the user
- Interface to mainstream CAS-SCF codes

The RelaxSE code: Flowchart

RelaxSE code: Summary

- Preliminary calculations
 - CASSCF on magn orb.
 - localisation of active orbitals
 - identification of bridging ligand orbitals
 - integral transformation
- Configuration interaction
- 5 SAS+S classes of orb. + frozen occupied and deleted virtual orbitals
- SAS+S, CAS+DDCI, CAS+S, CAS+SD
- OpenMP + MPI parallelisation
- Up to 10⁹ determinants
- Interfaced with Molcas
- LGPL license

The RelaxSE code: Performance

Table: Orbital partitioning in the $\rm YMnO_3$ calculations.

Set	Nocc	$N_{ m ligo}$	$\textit{N}_{\rm act}$	$N_{ m ligv}$	$N_{ m virt}$	$N_{ m det}$
LIGO	49	2	8	0	140	30 267 828
	47	4	8	0	140	53 017 324
	45	6	8	0	140	74 811 684
	43	8	8	0	140	95 650 908
LIGV	51	0	8	2	138	30 721 372
	51	0	8	4	136	54 531 036
	51	0	8	6	134	77 992 188
	51	0	8	8	132	101 104 828
BIG	47	4	8	6	134	1 097 706 172

Figure: CPU scaling as a function of N_{det}

The RelaxSE code: Performance

Set	Nocc	$N_{ m ligo}$	$\textit{N}_{\rm act}$	$N_{ m ligv}$	$N_{ m virt}$	$N_{ m det}$
LIGO	49	2	8	0	140	30 267 828
	47	4	8	0	140	53 017 324
	45	6	8	0	140	74 811 684
	43	8	8	0	140	95 650 908
LIGV	51	0	8	2	138	30 721 372
	51	0	8	4	136	54 531 036
	51	0	8	6	134	77 992 188
	51	0	8	8	132	101 104 828
BIG	47	4	8	6	134	1 097 706 172

Table: Orbital partitioning in the $\rm YMnO_3$ calculations.

Figure: OpenMP speedup compared to calculations with 10 OpenMP treads

The RelaxSE code: Performance

Set	Nocc	$N_{ m ligo}$	$N_{ m act}$	$N_{ m ligv}$	$N_{\rm virt}$	$N_{\rm det}$
LIGO	49	2	8	0	140	30 267 828
	47	4	8	0	140	53 017 324
	45	6	8	0	140	74 811 684
	43	8	8	0	140	95 650 908
LIGV	51	0	8	2	138	30 721 372
	51	0	8	4	136	54 531 036
	51	0	8	6	134	77 992 188
	51	0	8	8	132	101 104 828
BIG	47	4	8	6	134	1 097 706 172

Table: Orbital partitioning in the $\rm YMnO_3$ calculations.

Figure: MPI speedup compared to a calculation with 4 MPI processes

Application: hexagonal YMnO₃ compound

Magnetic pattern

Magnetic interactions

- $J_1 = -3.19 \,\mathrm{meV}$
- $J_2 = -3.41 \text{ meV}$
- $J_{av} = -2.3 \,\mathrm{meV} \,[1]$
- $J_{av} = -3.0 \,\mathrm{meV} \, [2]$

S. Petit *et al*, Phys. Rev. Letters **99**, 266604 (2007).
 J. Park *et al*, Phys. Rev. **B 68**, 104426 (2003), (2003).

Conclusions and Perspectives

Conclusions

- SAS+S, CAS+DDCI, CAS+S, CAS+SD
- OpenMP + MPI parallelisation
- Up to 10⁹ determinants
- Interfaced with Molcas
- LGPL license

Perspectives

- Determination of the bridging orbitals
- Inclusion of spin-orbit effects
- Decreasing the memory usage

Thank you for your attention

References

• SAS+S method A. Gellé, J. Varignon and M.-B. Lepetit, *EPL*, 88, 37003 (2009).

• RelaxSE code

- E. Rebolini and M.-B. Lepetit, J. Chem. Phys., 154, 164116 (2021).
- RelaxSE git repository https://code.ill.fr/relaxse/relaxse-code.git

Acknowledgements

- Marie-Bernadette Lepetit
- IDRIS/GENCI Grant Number 91842
- ANR project HTHPCM (2TB node)