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Outline

Physics of the photoemission spectroscopy;
one and three-body Green’s function;
application to the symmetric Hubbard dimer;
conclusion and future development.
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Direct and inverse photoemission

•hole/hole/electron •electron/electron/hole

N → N − 1 N → N + 1
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One-body Green’s function

The one-body Green’s function is defined as

iG1(1, 1′) = 〈ΨN
0 |T [ψ̂(1)ψ̂†(1′)]|ΨN

0 〉

where (1) = (r1, σ1, t1) and

T [ψ̂(1)ψ̂†(1′)] = θ(t1 − t1′)ψ̂(1)ψ̂†(1′)− θ(t1′ − t1)ψ̂†(1′)ψ̂(1).

It is possible to write G1 in the well known spectral representation

G1(ω)=
∑
n

〈ΨN
0 |ψ̂|ΨN+1

n 〉〈ΨN+1
n |ψ̂†|ΨN

0 〉
ω − (EN+1

n − EN
0 ) + iη

+
∑
n

〈ΨN
0 |ψ̂†|ΨN−1

n 〉〈ΨN−1
n |ψ̂|ΨN

0 〉
ω − (EN

0 − EN−1
n )− iη

To calculate G1 we use the Dyson equation

G1(ω) = G01(ω) + G01(ω)Σ1(ω)G1(ω)
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Why a three-body Green’s function

G1(ω) = G01(ω) + G01(ω)Σ1(ω)G1(ω)

G01(ω) contains only quasi-particle poles;
Σ1(ω) creates satellites and moves all the poles correctly.
Σ1(ω = 0) moves the QP poles. No satellites are created (important
at strong correlation).

G3(ω) = G03(ω) + G03(ω)Σ3(ω)G3(ω)

G03(ω) contains both quasi-particle and satellite poles;
Σ3(ω) moves all poles correctly.
Σ3(ω = 0) moves all poles. Satellites are present.
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Three-body Green’s function

The three-body Green’s function is defined as

G3(1, 2, 3, 1′, 2′, 3′) = i〈ΨN
0 |T [ψ̂(1)ψ̂(2)ψ̂(3)ψ̂†(3′)ψ̂†(2′)ψ̂†(1′)]|ΨN

0 〉

where (1) = (r1, σ1, t1). Thanks to the T-ordering operator

T [ψ̂1(1)...ψ̂n(n)] =
∑
p

θ(tp1 > ... > tpn)(−1)pψ̂p1(p1)...ψ̂pn(pn)

and adding a completeness
∑

n |ΨN
n 〉〈ΨN

n | = 1, it describes
e/e/h 〈ΨN

0 |ψ̂ψ̂†ψ̂|ΨN+1
n 〉〈ΨN+1

n |ψ̂†ψ̂ψ̂†|ΨN
0 〉

h/h/e 〈ΨN
0 |ψ̂†ψ̂ψ̂†|ΨN−1

n 〉〈ΨN−1
n |ψ̂ψ̂†ψ̂|ΨN

0 〉
e/e/e 〈ΨN

0 |ψ̂ψ̂ψ̂|ΨN+3
n 〉〈ΨN+3

n |ψ̂†ψ̂†ψ̂†|ΨN
0 〉

h/h/h 〈ΨN
0 |ψ̂†ψ̂†ψ̂†|ΨN−3

n 〉〈ΨN−3
n |ψ̂ψ̂ψ̂|ΨN

0 〉
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Meaning of the time differences

Each e/e/h term has a form similar to∑
n

e iτ(E
N
0 −EN+1

n )〈ΨN
0 |ψ̂(x1)e−i Ĥτ13′ ψ̂†(x3′)e

−i Ĥτ3′2ψ̂(x2)|ΨN+1
n 〉

〈ΨN+1
n |ψ̂†(x2′)e

−i Ĥτ2′3ψ̂(x3)e−i Ĥτ31′ ψ̂†(x1′)|ΨN
0 〉

where τ corresponds to the time of the combined propagation of the added
particle and the electron-hole pair

τ =
1
3

(t1 + t2 + t3′)−
1
3

(t3 + t1′ + t2′) and τij = ti − tj .

The time differences τij are instantaneous: τij → 0.

G.Riva (CNRS,ANR) Three-body Green’s function 10th January 2022 7 / 19



Electron-electron-hole and hole-hole-electron parts

The e/e/h and h/h/e parts of G3 in the spectral representation read as

G3
e+h(x1, x2, x3, x1′ , x2′ , x3′ ;ω) = G e

3 (x1, ..., x3′ ;ω) + Gh
3 (x1, ..., x3′ ;ω)

=
∑
n

〈ΨN
0 |ψ̂(x1)ψ̂†(x3′)ψ̂(x2)|ΨN+1

n 〉〈ΨN+1
n |ψ̂†(x2′)ψ̂(x3)ψ̂†(x1′)|ΨN

0 〉
ω − (EN+1

n − EN
0 ) + iη

+
∑
n

〈ΨN
0 |ψ̂†(x2′)ψ̂(x3)ψ̂†(x1′)|ΨN−1

n 〉〈ΨN−1
n |ψ̂(x1)ψ̂†(x3′)ψ̂(x2)|ΨN

0 〉
ω − (EN

0 − EN−1
n )− iη

while the addition and the removal parts of G1 are

G1(x1, x1′ ;ω) = G e
1 (x1, x1′ ;ω) + Gh

1 (x1, x1′ ;ω)

=
∑
n

〈ΨN
0 |ψ̂(x1)|ΨN+1

n 〉〈ΨN+1
n |ψ̂†(x1′)|ΨN

0 〉
ω − (EN+1

n − EN
0 ) + iη

+
∑
n

〈ΨN
0 |ψ̂†(x1′)|ΨN−1

n 〉〈ΨN−1
n |ψ̂(x1)|ΨN

0 〉
ω − (EN

0 − EN−1
n )− iη
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Link between G3 and G1

With appropriate contractions and integrations it is possible to recover G1
from G3∫

dx2dx3G
e
3 (x1, x2, x3, x1′ , x3, x2, ω) = (N + 1)2G e

1 (x1, x1′ , ω)∫
dx2dx3G

h
3 (x1, x2, x3, x1′ , x3, x2, ω) = N2Gh

1 (x1, x1′ , ω)
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Dyson equation and self-energy for G3

G e+h
3 (ω) = G e+h

03 (ω) + G e+h
03 (ω)Σ3(ω)G e+h

3 (ω)

where G e+h
03 is the non-interacting electron/hole three-body Green’s

function. It contains both quasi-particle and satellite poles

G e+h
03 (ω) =

φφφφ∗φ∗φ∗

ω − εc + iη
+

φφφφ∗φ∗φ∗

ω − εc − εe/h + iη
+ ...

where εc is the one-particle energy of a conduction band, and εe/h is the
energy of the electron/hole pair.
We defined Σ3 as the three-body self-energy. Its task is to shift the poles
from non-interacting to interacting ones. A static self-energy is enough to
do that

G−1
3static(ω) = G−1

03 (ω)− Σ3(ω = 0)
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Symmetric Hubbard dimer

The Hamiltonian of the model is

H = −t
∑

i 6=j=1,2

∑
σ

c†iσcjσ +
U

2

∑
i=1,2

∑
σσ′

c†iσc
†
iσ′ciσ′ciσ − ε0

∑
i=1,2

∑
σ

niσ.

Where −t and U represents the hopping kinetic energy and the on-site
(spin-independent) interaction.
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Spectral function of the half filling Hubbard dimer

Weak interaction
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Spectral function of the half filling Hubbard dimer

Strong interaction
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Conclusions and future developments

In conclusion:
We developed a new strategy, based on the three-body Green’s
function and static three-body self-energy, to obtain the direct and
inverse photo-emission spectra;
Our model was tested on the symmetric Hubbard dimer giving very
encouraging results;
We need a strategy to find an approximate three-body self-energy that
can be applied to real system.
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Link G3-G1

G3
e+h(x1, x2, x3, x1′ , x3, x2;ω) =

=
∑
n

〈ΨN
0 |ψ̂(x1)ψ̂†(x2)ψ̂(x2)|ΨN+1

n 〉〈ΨN+1
n |ψ̂†(x3)ψ̂(x3)ψ̂†(x1′)|ΨN

0 〉
ω − (EN+1

n − EN
0 ) + iη

+
∑
n

〈ΨN
0 |ψ̂†(x3)ψ̂(x3)ψ̂†(x1′)|ΨN−1

n 〉〈ΨN−1
n |ψ̂(x1)ψ̂†(x2)ψ̂(x2)|ΨN

0 〉
ω − (EN

0 − EN−1
n )− iη

Using
∫
dxψ̂†(x)ψ̂(x)|ΨN

n 〉 = N|ΨN
n 〉 and

∫
dx〈ΨN

n |ψ̂†(x)ψ̂(x) = 〈ΨN
n |N∫

dx2dx3G
e
3 (x1, x2, x3, x1′ , x3, x2, ω) = (N + 1)2G e

1 (x1, x1′ , ω)∫
dx2dx3G

h
3 (x1, x2, x3, x1′ , x3, x2, ω) = N2Gh

1 (x1, x1′ , ω)
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G03

the non-interacting three-body Green’s function is a sum of two types of
terms

G01(ω)G01G01 =
∑
n,m,t

φnφ
∗
nφmφ

∗
mφtφ

∗
t

ω − εc/vn + iηsign(ω − µ)∫
dω′dω′′G01(ω + ω′−ω′′)G01(ω′)G01(ω′′) =

=
∑
n,m,t

φnφ
∗
nφmφ

∗
mφtφ

∗
t

ω − εc/vn − εc/vm + ε
v/c
t + iηsign(ω − µ)
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Total electron/electron/hole contribution

G3
e(x1, x2, x3, x1′ , x2′ , x3′ ; τ12, τ23′ , τ1′2′ , τ2′3, ω) =

=−
∑
n

e−i [ω−(E
N+1
n −EN

0 )]F (τ12,τ3′1,τ1′2′ ,τ31′ )

Xn(x1, x2, x3′ ; τ12, τ23′)X̃n(x1′ , x2′ , x3; τ1′2′ , τ2′3)

ω − (EN+1
n − EN

0 ) + iη

where

Xn(x1, x2, x3′ ; τ12, τ23′) =
∑

i 6=j 6=k=1,2,3′
(−1)Pθ(τij)θ(τjk) exp[

i

3
EN

0 (2τij + τjk)]

exp[
i

3
EN+1
n (2τjk + τij)]〈ΨN

0 |Υ(xi )e
−iHτij Υ(xj)e

−iHτjk Υ(xk)|ΨN+1
n 〉

and

F (τ12, τ3′1, τ1′2′ , τ31′) =
∑

i 6=j 6=k=1,2,3′
(τij−τki )θ(τjk)θ(τki )−

∑
i 6=j 6=k=1′,2′,3

(τij−τki )θ(τjk)θ(τij)
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Spectral function of the 1/4 filling Hubbard dimer

Weak interaction
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Spectral function of the 1/4 filling Hubbard dimer

Strong interaction
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Spectral amplitude

G e+h
3 (ω) =

∫ µ

−∞
dω′

A3(ω′)

ω − ω′ − iη
+

∫ +∞

µ
dω′

A3(ω′)

ω − ω′ + iη

A3(x1, x2, x3, x1′ , x2′ , x3′ ;ω)

=
∑
n

Xn(x1, x2, x3′)X∗n(x1′ , x2′ , x3)δ(ω − (EN+1
n − EN

0 ))

+
∑
n

Zn(x1, x2, x3′)Z∗n(x1′ , x2′ , x3)δ(ω − (EN
0 − EN−1

n ))
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