

A will and

Ab initio description of doubly open-shell nuclei via a novel multi-reference perturbation theory

Vittorio Somà CEA & Université Paris-Saclay, France

GDR NBODY - General meeting 10 January 2022

[1] M. Frosini, T. Duguet, J.-P. Ebran, V. Somà, arXiv:2110.15737

[2] M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, T. Mongelli, T.R. Rodríguez, R. Roth, V. Somà, arXiv:2111.00797

[3] M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, H. Hergert, T.R. Rodríguez, R. Roth, J.M. Yao, V. Somà, arXiv:2111.01461

Introduction

• PGCM-PT formalism

• PGCM results

• PGCM-PT(2) results

• Outlook

Ab initio nuclear chart

Ab initio

Hamiltonian describes "bare" NN & NNN interactions

(Approximate) solution must be systematically improvable and approach the exact solution

Ab initio nuclear chart

• Further progress hindered by

- Storage cost of Hamiltonian matrix elements (method-independent)
- Runtime & memory costs of many-body calculations (method-dependent)

 \rightarrow Mixed scaling

→ Polynomial scaling

- Full space diagonalisation
- \rightarrow Exponential scaling

Closed- vs open-shell nuclei

Single- vs multi-reference strategy

- U(1)-breaking
 - → Gorkov SCGF, BMBPT, BCC
- \circ SU(2)-breaking
 - \rightarrow Deformed CC
- Symmetry restoration
 - → Theory developed (excpet GF) [Duguet 2015]
 - → Implementation: work in progress

- IR physics via diagonalisation
 - → Multi-configuration PT
 - \rightarrow Diagonalisation step impacts scalability
- This work: IR physics via PGCM
 - → Exploits symmetry breaking + restoration
 - → Symmetry-conserving & low dimensional
 - → PGCM-PT

Single- vs multi-reference strategy

- \rightarrow Theory developed (excpet GF) [Duguet 2015]
- → Implementation: work in progress

ing & low dimensional

Introduction

• PGCM-PT formalism

• PGCM results

• PGCM-PT(2) results

• Outlook

Unperturbed state

• Construction of the unperturbed state via projected generator coordinate method (PGCM)

○ Low-dimensional linear combination of *<u>non-orthogonal</u>* Bogolyubov product states (← EDF)

Shows a set of non-orthogonal projected HFB states

Perturbative expansion

• Formal perturbation theory

- Introduce partitioning $H = H_0 + H_1$
- Expand exact wave function and energy as $|\Psi\rangle \equiv \sum_{k=0}^{\infty} |\Theta^{(k)}\rangle$ and $E \equiv \sum_{k=0}^{\infty} E^{(k)}$

• Perturbative corrections can be identified by partitioning the Hilbert space via the projectors

- Model space $\mathcal{P} \equiv |\Theta^{(0)}\rangle\langle\Theta^{(0)}| \qquad \mathcal{Q} \equiv 1 \mathcal{P} \longrightarrow External space$
- \circ Second-order energy correction reads

 $E^{(2)} = \langle \Theta^{(0)} | H_1 \mathcal{Q} | \Theta^{(1)} \rangle \qquad \text{where} \qquad |\Theta^{(1)}\rangle = -\mathcal{Q} \left(H_0 - E^{(0)} \right)^{-1} \mathcal{Q} H_1 | \Theta^{(0)} \rangle$

 $= If eigenstates of H_0 are known, one can invert and obtain algebraic expressions$ $H_0 = E^{(0)} |\Phi^{(0)}\rangle \langle \Phi^{(0)}| + \sum_{I}^{S,D,\dots} E^{I} |\Phi^{I}\rangle \langle \Phi^{I}| \longrightarrow E^{(2)} = -\sum_{I}^{S,D} \frac{\left|\langle \Phi^{(0)} | H_1 | \Phi^{I} \rangle\right|^2}{E^{I} - E^{(0)}}$

 \rightarrow Non-orthogonal PT (present case): only one eigenstate of H_0 is known

- \rightarrow No well-defined Hilbert-space partitioning, projector *Q* cannot be explicitly constructed
- → Rigorous PT formalised only recently: NOCI-PT [Burton & Thom 2020]

Perturbative expansion

• Non-orthogonal perturbation theory

 \circ Construct reference Hamiltonian H_0

→ Introduce state-specific partitioning $H_0 \equiv \mathcal{P}^{\tilde{\sigma}}_{\mu} F_{[|\Theta\rangle]} \mathcal{P}^{\tilde{\sigma}}_{\mu} + \mathcal{Q}^{\tilde{\sigma}}_{\mu} F_{[|\Theta\rangle]} \mathcal{Q}^{\tilde{\sigma}}_{\mu}$

One-body operator $F(\rho(\Theta))$ such that Møller-Plesset partitioning is recovered in the single-determinant limit

• Construct first-order wave function

 \rightarrow Build all possible excitations on top of each Bogolyubov state entering $|\Theta^{(0)}\rangle$, then

 $|\Theta^{(1)}\rangle = \sum_{q} \sum_{I} a^{I}(q) |\Omega^{I}(q)\rangle \quad \text{where} \quad |\Omega^{I}(q)\rangle \equiv \mathcal{Q}P_{00}^{\tilde{\sigma}} |\Phi^{I}(q)\rangle$ Excited Bogolyubov vacua, where $I \in S, D, T, \dots$

 \circ Compute second-order energy as a function of $H_1 = H - H_0$ and $|\Theta^{(1)}\rangle$

 \rightarrow Only $|\Phi^{I}(q)\rangle$ with $I \in S, D$ contribute \rightarrow Approximate $|\Theta^{(1)}\rangle = \sum_{q} \sum_{I \in S, D} a^{I}(q) |\Omega^{I}(q)\rangle$

 $\implies \text{Master equation} \quad \sum_{q} \sum_{J \in S, D} M_{IpJq} a^{J}(q) = -h_{1}^{I}(p) \quad \text{where} \quad \mathbf{M} \equiv \mathbf{H}_{0} - E^{(0)} \mathbf{1}$

Baranger 1-body Hamiltonian

Introduction

• PGCM-PT formalism

• PGCM results

• PGCM-PT(2) results

• Outlook

1. Constrained HFB MeV_76 2.0 -78 ²⁰Ne [HFB] -80 1.6 -82 1.2 -84 β_3 -86 0.8 -88 -90 0.4 -92 -94 0.0 -0.30.0 0.3 0.6 0.9 1.2 1.5 β_2

 ^{20}Ne

Constrained HFB calculations

- \circ Maps total energy surface (TES)
- Minimum at strongly deformed configuration
- \circ TES soft along the octupole direction

^{20}Ne

Projected HFB calculations

- \circ Projections favour deformed configurations
- \circ Negative parity states accessed
- \circ Provide input for computing PGCM state

^{20}Ne

• PGCM mixing

- \circ Collective w.f. \rightarrow admixture of PHFB states
- Significant shape fluctuations
- \circ Negative parities mix more deformations

^{20}Ne

• PGCM excitation spectrum

• Reference: in-medium no-core shell model (IM-NCSM) [Mongelli & Roth]

- → Good agreement with experiment and (quasi-)exact IM-NCSM
- → Essential **static correlations** captured by PGCM
- → Exaggerated collectivity [B(E2) systematically larger than experiment]
- → Restricting PGCM to 1D or PHFB **deteriorates spectrum**

Neon chain

Dynamical correlations essential for B.E.
PT+projection provide good indication
Radii: trend corrected by PGCM

Excited states

- Good description until ²⁴Ne
- \circ ³⁰Ne off the trend
- \circ Heavier isotopes too collective in PGCM

Introduction

• PGCM-PT formalism

• PGCM results

• PGCM-PT(2) results

• Outlook

PGCM-PT(2) validation

• First proof-of-principle calculation in a small model space (e_{max}=4)

- \circ NN interaction only
- Compare to exact Full CI reference [R. Roth]

● Doubly closed-shell ¹⁶O

- Radius as collective coordinate
- \circ GCM yields small effect in closed-shells
- \circ GCM-PT(2) gets close to FCI
- MBPT(2,3) consistent at canonical point

PGCM-PT(2) validation

• First proof-of-principle calculation in a small model space (e_{max}=4)

- \circ NN interaction only
- Compare to exact Full CI reference [R. Roth]

O Doubly closed-shell ¹⁶O

- \circ Radius as collective coordinate
- \circ GCM yields small effect in closed-shells
- GCM-PT(2) gets close to FCI
- MBPT(2,3) consistent at canonical point

Oubly open-shell ²⁰Ne

- \circ Quadrupole def. as collective coordinate
- \circ Projection brings 5 MeV binding
- PGCM-PT(2) brings in dyn. correlations
- \circ dMBPT(2,3) underbinds \rightarrow projection needed

PGCM-PT(2) validation

● First proof-of-principle calculation in a small model space (e_{max}=4)

- \circ NN interaction only
- Compare to exact Full CI reference [R. Roth]

O Doubly closed-shell ¹⁶O

- Radius as collective coordinate
- \circ GCM yields small effect in closed-shells
- GCM-PT(2) gets close to FCI
- MBPT(2,3) consistent at canonical point

Oubly open-shell ²⁰Ne

- \circ Quadrupole def. as collective coordinate
- \circ Projection brings 5 MeV binding
- PGCM-PT(2) brings in dyn. correlations
- \circ dMBPT(2,3) underbinds \rightarrow projection needed
- PGCM-PT(2) preserves quality of exc. spectra

Combining PGCM-PT(2) with MR-IMSGR

• Multi-reference IMSRG: nucleus-dependent transformation of H $H(s) = U^{\dagger}(s)HU(s)$

• Decouples $|\Theta^{(0)}\rangle$ from Q space as $s \to \infty$ \rightarrow Dynamical correlations recast into H(s)

 \circ PGCM+MR-IMSRG recently explored by Yao et al. \rightarrow Promising results; impact of PT?

- → Problem becomes more perturbative
- \rightarrow PT(2) correction systematically decreases

- \rightarrow PT(2) corrects for dilatation of spectrum
- \rightarrow Triaxial GCM not enough

Introduction

• PGCM-PT formalism

• PGCM results

• PGCM-PT(2) results

Outlook

Towards the ab initio description of complex nuclei

• Three complementary levers to tackle complex mid-mass/heavy nuclei via expansion methods

1. Pre-processing of the Hamiltonian

→ Flow must resum bulk of dynamical correlations without inducing a large break of unitarity

2. Choice of reference state

- → Rich enough to capture non-perturbative static correlations, but low dimensionality
- 3. Systematic expansion of the many-body Schrödinger equation
 - \rightarrow Low-order truncation with gentle scaling

Optimal balance between the three must be found

• Novel multi-reference perturbation theory

- \circ PGCM accounts for collective/IR correlations
- UV physics provided by well-defined non-orthogonal PT
- \circ Can be combined with pre-processing of H

