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Ab initio nuclear chart

Ab initio
(Approximate) solution must be systematically 

improvable and approach the exact solution
Hamiltonian describes “bare” 

NN & NNN interactions

Energy density functional (EDF)
Hamiltonian (phenomenologically) 

incorporates in-medium correlations
Simpler wave function allows 
gentle scaling with system size



○ Storage cost of Hamiltonian matrix elements (method-independent)
⦿ Further progress hindered by
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○ Runtime & memory costs of many-body calculations (method-dependent)

Ab initio nuclear chart

⦿ CI methods ⦿ Expansion methods

○ Full space diagonalisation

➝  Exponential scaling

○ Partition, expand & truncate

➝  Polynomial scaling

⦿ Hybrid methods

○ Valence space diag.

➝  Mixed scaling



Closed- vs open-shell nuclei
Landscape of medium mass nuclei
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⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations
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Breakdown of ph expansion

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations
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Approximate ab initio methods

i j

a b



Single-reference strategy

Gap reopened via symmetry breaking

✓ ph expansion: simpler formalism 
✗ Symmetries must be restored

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

⦿ Solution: multi-determinantal or symmetry-breaking reference state 

Doubly open-shell nuclei

Pairing correlations
↕ 

Superfluidity
↕

Breaking of U(1)

Quadrupole correlations
↕

Deformation
↕

Breaking of SU(2)

○ Symmetry-breaking solution allows to lift the degeneracy

Singly open-shells Doubly open-shells

To be developed and implementedDeveloped and implemented

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

Approximate ab initio methods

i j

a b

Multi-reference strategy

Gap reopened via pre-treatment of IR physics
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○ U(1)-breaking

➝ Gorkov SCGF, BMBPT, BCC

○ IR physics via diagonalisation

○ Symmetry restoration

○ This work: IR physics via PGCM

➝  Symmetry-conserving & low dimensional
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➝  Multi-configuration PT

➝  Exploits symmetry breaking + restoration

➝  Diagonalisation step impacts scalability

Single- vs multi-reference strategy

➝ Theory developed (excpet GF)   [Duguet 2015]

➝ Implementation: work in progress ➝  PGCM-PT



Single-reference strategy

Gap reopened via symmetry breaking

✓ ph expansion: simpler formalism 
✗ Symmetries must be restored

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

⦿ Solution: multi-determinantal or symmetry-breaking reference state 

Doubly open-shell nuclei

Pairing correlations
↕ 

Superfluidity
↕

Breaking of U(1)

Quadrupole correlations
↕

Deformation
↕

Breaking of SU(2)

○ Symmetry-breaking solution allows to lift the degeneracy

Singly open-shells Doubly open-shells

To be developed and implementedDeveloped and implemented

⦿ Approximate/truncated methods capture correlations via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

open-shellclosed-shell

i j

a b

i j a b

Approximate ab initio methods

i j

a b

Multi-reference strategy

Gap reopened via pre-treatment of IR physics

UV space

IR space

✓ Symmetries can be preserved
✗ ph expansion: complicated formalism

Vacuum
Gap to first excited state

Vacuum No gap

○ U(1)-breaking

➝ Gorkov SCGF, BMBPT, BCC

○ Symmetry restoration

○ This work: IR physics via PGCM

➝  Symmetry-conserving & low dimensional

○ SU(2)-breaking

➝ Deformed CC

➝  Exploits symmetry breaking + restoration

Single- vs multi-reference strategy

➝ Theory developed (excpet GF)   [Duguet 2015]

➝ Implementation: work in progress ➝  PGCM-PT

Partiti
on, then expand & project

Partiti
on & project, th

en expand



Outline

⦿ Introduction

⦿ PGCM-PT formalism

⦿ PGCM results

⦿ PGCM-PT(2) results

⦿ Outlook



Unperturbed state

⦿ Construction of the unperturbed state via projected generator coordinate method (PGCM)

EΘ(0)

|q|

Projection

Shape mixing

Rotational modes

Vibrational modes

Variational principle  ➝  Hill-Wheeler-Griffin eq.

6

(PGCM). The unperturbed state is thus of MR character
given that a PGCM state is nothing but a linear combina-
tion of non-orthogonal product states whose coe�cients
result from solving Hill-Wheeler-Gri�n’s (HWG) secu-
lar problem [21], i.e. a generalized many-body eigenvalue
problem. The PGCM perturbation theory (PGCM-PT)
of present interest adapts to the nuclear many-body
problem the MR perturbation theory recently formu-
lated in the context of quantum chemistry [?] where
the reference state arises from a non-orthogonal config-
uration interaction (NOCI) calculation involving Slater
determinants. In order to do so, the method is presently
generalized to the mixing of Bogoliubov vacua.

In the present context, PGCM must thus be viewed as
the unperturbed, i.e. zeroth-order, limit of the PGCM-
PT formalism that is universally applicable, i.e. indepen-
dently of the closed or open-shell nature of the system
and of the ground or excited character of the PGCM
state generated though the initial HWG problem. Be-
cause PGCM states e�ciently capture strong static
correlations associated with the spontaneous breaking
of symmetries and their restoration as well as with
large amplitude collective fluctuations, one is only left
with incorporating the remaining weak dynamical cor-
relations, which PGCM-PT o↵ers to do consistently.
Because of the incorporation of static correlations into
the zeroth-order state, the hope is that nuclear observ-
ables associated with a large set of nuclei and quantum
states can be su�ciently converged at low orders in
PGCM-PT.

3.1 PGCM unperturbed state

3.1.1 Ansatz

|⇥0
i = |�(q)i

|⇥0
i =

X

q

f(q)P |�(q)i

|�(q1)i |�(q2)i |�(q3)i

A MR PGCM state can be written as

|⇥�

µ
i ⌘

Z
dqf �̃

µ
(q)P �̃

M0|�(q)i

=
d�̃
vG

X

q

f �̃

µ
(q)

X

✓

D�̃⇤
M0(✓)|�(q; ✓)i , (27)

where integrals over the collective coordinate q and the
rotation angle ✓ have been discretized as actually done
in a practical calculation.

In Eq. (27), Bq ⌘ {|�(q)i; q 2 set} denotes a set of non-
orthogonal Bogoliubov states di↵ering by the value of
the collective deformation parameter q. Such an ansatz is
characterized by its capacity to e�ciently capture static
correlations from a low-dimensional, i.e. from several
tens to a few hundreds, configuration mixing at the price
of dealing with non-orthogonal vectors. This constitutes
a very advantageous feature, especially as the mass A of
the system, and thus the dimensionality of the Hilbert
space HA, grows.

The product states belonging to Bq are typically ob-
tained in a first step by solving repeatedly Hartree-Fock-
Boboliubov (HFB) mean-field equations with a Lagrange
term associated with a constraining operator11 Q such
that the solution satisfies

h�(q)|Q|�(q)i = q . (28)

The constrained HFB total energyH00(q) (see Eq. (113))
delivers as a function of q, the so-called HFB total energy
curve (TEC). Details about Bogoliubov states and the
associated algebra, as well as constrained HFB equations,
can be found in App. C. The constraining operator Q is
typically defined such that the product states belonging
to Bq break a symmetry of the Hamiltonian as soon
as q 6= 0. Because physical states must carry good
symmetry quantum numbers one acts on |�(q)i with
the operator12

P �̃

M0 =
d�̃
vG

Z

DG

d✓D�̃⇤
M0(✓)R(✓) (29)

in Eq. (27) to project the HFB state onto eigenstates of
the symmetry operators with eigenvalues (�̃,M). The
operator P �̃

M0 is expressed in terms of the symmetry
rotation operator R(✓) and the IRREP D�̃

MK(✓) of the
symmetry group GH . See App. B for a discussion of the
actual symmetry group, symmetry quantum numbers
and symmetry projector of present interest.

Due to the symmetry projection, the PGCM state is
eventually constructed from an extended set Bq;✓ ⌘

{|�(q; ✓)i; q 2 set and ✓ 2 DG}
13 of Bogoliubov states

11The generic operator Q can embody several constraining
operators such that the collective coordinate q may in fact be
multi dimensional.
12The present work is e↵ectively concerned with HFB states
that are invariant under spatial rotation around a given sym-
metry axis. Extending the formulation to the case where |�(q)i
does not display such a symmetry poses no formal di�culty
but requires a more general projection operator P�; see App. B
for details.
13Seeing the PGCM state as a configuration mixing of states
belonging to Bq;✓ rather than as resulting from the projection
of the states belonging Bq allows one to define the SR limit of
PGCM-PT via the truncation of the double sum in Eq. (27) to
a single term such that the PGCM unperturbed state reduces
to one symmetry-breaking state |�(q; 0)i.
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with incorporating the remaining weak dynamical cor-
relations, which PGCM-PT o↵ers to do consistently.
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the zeroth-order state, the hope is that nuclear observ-
ables associated with a large set of nuclei and quantum
states can be su�ciently converged at low orders in
PGCM-PT.

3.1 PGCM unperturbed state

3.1.1 Ansatz

|⇥0
i = |�(q)i

|⇥0
i =

X

q

f(q)P |�(q)i

|�(q1)i |�(q2)i |�(q3)i

P �̃
|�(q1)i P �̃

|�(q2)i P �̃
|�(q3)i

A MR PGCM state can be written as

|⇥�

µ
i ⌘

Z
dqf �̃

µ
(q)P �̃

M0|�(q)i

=
d�̃
vG

X

q

f �̃

µ
(q)

X

✓

D�̃⇤
M0(✓)|�(q; ✓)i , (27)

where integrals over the collective coordinate q and the
rotation angle ✓ have been discretized as actually done
in a practical calculation.

In Eq. (27), Bq ⌘ {|�(q)i; q 2 set} denotes a set of non-
orthogonal Bogoliubov states di↵ering by the value of
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The product states belonging to Bq are typically ob-
tained in a first step by solving repeatedly Hartree-Fock-
Boboliubov (HFB) mean-field equations with a Lagrange
term associated with a constraining operator11 Q such
that the solution satisfies
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The constrained HFB total energyH00(q) (see Eq. (113))
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M0 is expressed in terms of the symmetry
rotation operator R(✓) and the IRREP D�̃
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symmetry group GH . See App. B for a discussion of the
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11The generic operator Q can embody several constraining
operators such that the collective coordinate q may in fact be
multi dimensional.
12The present work is e↵ectively concerned with HFB states
that are invariant under spatial rotation around a given sym-
metry axis. Extending the formulation to the case where |�(q)i
does not display such a symmetry poses no formal di�culty
but requires a more general projection operator P�; see App. B
for details.
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{|�(q; ✓)i; q 2 set and ✓ 2 DG}
13 of Bogoliubov states

11The generic operator Q can embody several constraining
operators such that the collective coordinate q may in fact be
multi dimensional.
12The present work is e↵ectively concerned with HFB states
that are invariant under spatial rotation around a given sym-
metry axis. Extending the formulation to the case where |�(q)i
does not display such a symmetry poses no formal di�culty
but requires a more general projection operator P�; see App. B
for details.
13Seeing the PGCM state as a configuration mixing of states
belonging to Bq;✓ rather than as resulting from the projection
of the states belonging Bq allows one to define the SR limit of
PGCM-PT via the truncation of the double sum in Eq. (27) to
a single term such that the PGCM unperturbed state reduces
to one symmetry-breaking state |�(q; 0)i.

○ Low-dimensional linear combination of non-orthogonal Bogolyubov product states  (← EDF)

➪ NOCI eigenvalue problem expressed in a set of non-orthogonal projected HFB states
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µ
ih⇥�̃K
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Q
�̃

µ
⌘ 1� P

�̃

µ
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are introduced. The operator P �̃

µ
projects on the eigen

subspace of H0 spanned by the unperturbed state along
with the degenerate states obtained via symmetry trans-
formations, i.e. belonging to the same irreducible repre-
sentation (IRREP) of the symmetry group. This consti-
tutes the so-called P space. The operator Q�̃

µ
projects

onto the complementary orthogonal subspace, the so-
called Q space. In the present context, the eigenstates
spanning the latter eigen subspace ofH0 are not assumed
to be known explicitly.

While the ingredients introduced above are state specific
and, as such, depend on the quantum numbers (µ, �̃),
those labels are dropped for the time being to lighten
the notations. Consequently, the targeted eigenstate and
energy of the full Hamiltonian are written as | i and E,
respectively, whereas the unperturbed state and energy
are denoted as |⇥(0)

i and E(0) to typify that they act
as zeroth-order quantities in the perturbative expansion
designed below. The projectors are simply denoted as
P and Q.

The goal is to compute the perturbative corrections to
both |⇥(0)

i and E(0) such that

| i ⌘
1X

k=0

|⇥(k)
i , (10a)

E ⌘

1X

k=0

E(k) , (10b)

where the superscript k indicates that the corresponding
quantity are proportional to the kth power of H1. This
expansion is defined using the so-called intermediate

normalization, i.e.

h⇥(0)
|⇥(k)

i = 0 , 8k � 1 , (11)

such that

h⇥(0)
| i = 1 . (12)

6The two hermitian operators fulfill (P �̃
µ )

2 = P
�̃
µ , (Q

�̃
µ)

2 = Q
�̃
µ

and P
�̃
µQ

�̃
µ = Q

�̃
µP

�̃
µ = 0 such that P

�̃
µ +Q

�̃
µ = 1.

2.2 Perturbative expansion

Rayleigh-Schrödinger perturbation theory [13] allows
one to first expand the exact state and energy as

| i ⌘
1X

m=0

�
X�1Y

�m
|⇥(0)

i , (13a)

E � E(0)
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1X

m=0
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|H1

�
X�1Y

�m
|⇥(0)

i , (13b)

where

X ⌘ Q

⇣
H0 � E(0)

⌘
Q , (14a)

Y ⌘ Q

⇣
E � E(0)

�H1

⌘
Q . (14b)

The two series do not yet provide the perturbative cor-
rections to the unperturbed quantities because of the
presence of E � E(0) on the right-hand side through Y .
To identify each perturbative contribution, it is neces-
sary to substitute Eq. (13b) for each E � E(0) in the
right-hand-side of Eq. (13) iteratively and sort out the
terms with equal powers of H1. This procedure leads
to7,8

|⇥(1)
i = �X�1

QH1|⇥
(0)

i , (15a)

|⇥(2)
i = +X�1

QH̄1QX�1
QH1|⇥

(0)
i , (15b)

...

and9

E(1) = h⇥(0)
|H1|⇥

(0)
i , (16a)

E(2) = h⇥(0)
|H1Q|⇥(1)

i

= �h⇥(0)
|H1QX�1

QH1|⇥
(0)

i , (16b)

E(3) = h⇥(0)
|H1Q|⇥(2)

i

= +h⇥(0)
|H1QX�1

QH̄1QX�1
QH1|⇥

(0)
i

= h⇥(1)
|QH̄1Q|⇥(1)

i , (16c)

...

7Starting with |⇥(3)
i and E(4), so-called renormalization terms

arise in addition to the principal term [13].
8The perturbative expansion of the wave operator formally
introduced in Eq. (7) is thus obtained as

⌦[�̃,µ,H1] = 1

� (X�̃

µ )
�1

Q
�̃

µH1

+ (X�̃

µ )
�1

Q
�̃

µH̄1Q
�̃

µ(X
�̃

µ )
�1

Q
�̃

µH1

+ . . .

9Some of the projectors Q are redundant but are kept to make
the systematic structure of the equations more apparent.
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9Some of the projectors Q are redundant but are kept to make
the systematic structure of the equations more apparent.

○ Perturbative corrections can be identified by partitioning the Hilbert space via the projectors
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9Some of the projectors Q are redundant but are kept to make
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External spaceModel space

If eigenstates of H0 are known, one can invert and obtain algebraic expressions

Non-orthogonal PT (present case): only one eigenstate of H0 is known

5

where H̄1 ⌘ H1 � E(1). The total energy of the unper-
turbed state is defined as

Eref ⌘ h⇥(0)
|H|⇥(0)

i = E(0) + E(1) . (17)

H0 = E(0)
|�(0)

ih�(0)
|+

S,D,...X

I

EI
|�I

ih�I
|

E(2) = �

S,DX

I

��h�(0)
|H1|�I

i
��2

EI � E(0)

2.3 Computable expression

Working algebraic expressions of |⇥(k)
i and E(k) are

easily obtained in case X is invertible, i.e. if the eigen-
states of H0 in Q space are known, which is not the
case in the present work. Under closer inspection, one
actually needs matrix elements of

A ⌘ �X�1
QH̄1 , (18)

noting in passing that QH̄1|⇥(0)
i = QH1|⇥(0)

i. Since
by definition

Q

⇣
H0 � E(0)

⌘
QA = �QH̄1 , (19)

the matrix A of A is the solution of the system of linear
equations

MA = �H̄1 , (20)

where M ⌘ H0�E(0)1 and where the left matrix index
necessarily belongs to Q space whereas the right index
is either in Q or P space. In expanded form, the linear
system reads, with i 6= 0,

X

k 6=0

MikAkj = �
�
H̄1

�
ij

, (21)

where the sum is restricted to Q-space states. In case
one is only interested in X�1

QH̄1|⇥(0)
i, a simpler linear

system involving the vectors a and h1 made out of the
first column Ak0 and (H1)k0 of A and H1, respectively,
needs to be solved, i.e.

Ma = �h1 . (22)

As discussed in Paper III, a sparse matrix representation
of M makes the iterative solution of the linear equation
system accessible under certain hypothesis for realistic
ab initio nuclear structure calculations.

Given A, the energy corrections can eventually be com-
puted as

E(2) = h⇥(0)
|H1A|⇥(0)

i = h†
1a , (23a)

E(3) = h⇥(0)
|H1A

2
|⇥(0)

i = h†
1Aa = a†H̄1a , (23b)

...

knowing that E(1) = (H1)00.

2.4 Hylleraas functional

Formal perturbation theory can be alternatively derived
through a variational method due to Hylleraas [?,?]. Let
us consider a variational ansatz

|⌅i ⌘ |⇥(0)
i+

1X

k=1

|⌅(k)
i , (24)

where h⇥(0)
|⌅(k)

i = 0 8k � 1 and where the variational
component |⌅(k)

i is proportional to Hk

1 . Computing the
expectation of H in |⌅i and sorting the various orders
in H1, Ritz’ variational principle leads to

E E(0) + E(1)

+
h
h⌅(1)

|QH1|⇥
(0)

i+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i

i
+O(H3

1 ) , (25)

For E to be a minimum of the right-hand side expression
for an arbitrary H1, each term associated with a given
power of H1 must be either minimal or constant in order
to indeed reach E. The sum of the corresponding terms
delivers the individual perturbative components E(k) in
Eq. (10b) given the uniqueness of the series in powers
of H1.

Noting that E(0) and E(1) are free from any variational
components, the variational approach starts with the
second-order energy correction E(2) that is the minimum
of the so-called Hylleraas functional

L[⌅(1)] ⌘ h⌅(1)
|QH1|⇥

(0)
i

+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i . (26)

It is straightforward to realize that the saddle-point
of Eq. (26) is obtained for |⌅(1)

i = |⇥(1)
i solution of

Eq. (15b).

This alternative derivation is of interest because it un-
derlines the fact that the use of an approximate ansatz
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turbed state is defined as

Eref ⌘ h⇥(0)
|H|⇥(0)

i = E(0) + E(1) . (17)

H0 = E(0)
|�(0)

ih�(0)
|+

S,D,...X

I

EI
|�I

ih�I
|

E(2) = �

S,DX

I

��h�(0)
|H1|�I

i
��2

EI � E(0)

2.3 Computable expression

Working algebraic expressions of |⇥(k)
i and E(k) are

easily obtained in case X is invertible, i.e. if the eigen-
states of H0 in Q space are known, which is not the
case in the present work. Under closer inspection, one
actually needs matrix elements of

A ⌘ �X�1
QH̄1 , (18)

noting in passing that QH̄1|⇥(0)
i = QH1|⇥(0)

i. Since
by definition

Q

⇣
H0 � E(0)

⌘
QA = �QH̄1 , (19)

the matrix A of A is the solution of the system of linear
equations

MA = �H̄1 , (20)

where M ⌘ H0�E(0)1 and where the left matrix index
necessarily belongs to Q space whereas the right index
is either in Q or P space. In expanded form, the linear
system reads, with i 6= 0,

X

k 6=0

MikAkj = �
�
H̄1

�
ij

, (21)

where the sum is restricted to Q-space states. In case
one is only interested in X�1

QH̄1|⇥(0)
i, a simpler linear

system involving the vectors a and h1 made out of the
first column Ak0 and (H1)k0 of A and H1, respectively,
needs to be solved, i.e.

Ma = �h1 . (22)

As discussed in Paper III, a sparse matrix representation
of M makes the iterative solution of the linear equation
system accessible under certain hypothesis for realistic
ab initio nuclear structure calculations.

Given A, the energy corrections can eventually be com-
puted as

E(2) = h⇥(0)
|H1A|⇥(0)

i = h†
1a , (23a)

E(3) = h⇥(0)
|H1A

2
|⇥(0)

i = h†
1Aa = a†H̄1a , (23b)

...

knowing that E(1) = (H1)00.

2.4 Hylleraas functional

Formal perturbation theory can be alternatively derived
through a variational method due to Hylleraas [?,?]. Let
us consider a variational ansatz

|⌅i ⌘ |⇥(0)
i+

1X

k=1

|⌅(k)
i , (24)

where h⇥(0)
|⌅(k)

i = 0 8k � 1 and where the variational
component |⌅(k)

i is proportional to Hk

1 . Computing the
expectation of H in |⌅i and sorting the various orders
in H1, Ritz’ variational principle leads to

E E(0) + E(1)

+
h
h⌅(1)

|QH1|⇥
(0)

i+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i

i
+O(H3

1 ) , (25)

For E to be a minimum of the right-hand side expression
for an arbitrary H1, each term associated with a given
power of H1 must be either minimal or constant in order
to indeed reach E. The sum of the corresponding terms
delivers the individual perturbative components E(k) in
Eq. (10b) given the uniqueness of the series in powers
of H1.

Noting that E(0) and E(1) are free from any variational
components, the variational approach starts with the
second-order energy correction E(2) that is the minimum
of the so-called Hylleraas functional

L[⌅(1)] ⌘ h⌅(1)
|QH1|⇥

(0)
i

+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i . (26)

It is straightforward to realize that the saddle-point
of Eq. (26) is obtained for |⌅(1)

i = |⇥(1)
i solution of

Eq. (15b).

This alternative derivation is of interest because it un-
derlines the fact that the use of an approximate ansatz

➝  No well-defined Hilbert-space partitioning, projector Q cannot be explicitly constructed

➝  Rigorous PT formalised only recently: NOCI-PT     [Burton & Thom 2020]

○ Second-order energy correction reads

4

2 Formal perturbation theory

2.1 Set up

The present work focuses on the perturbative expansion
of the wave operator. Starting from Eqs. (5)-(6), the
two projectors in direct sum6

P
�̃

µ
⌘

X

K

|⇥�̃K

µ
ih⇥�̃K

µ
| , (9a)

Q
�̃

µ
⌘ 1� P

�̃

µ
, (9b)

P ⌘ |⇥(0)
ih⇥(0)

|

Q ⌘ 1� P

are introduced. The operator P �̃

µ
projects on the eigen

subspace of H0 spanned by the unperturbed state along
with the degenerate states obtained via symmetry trans-
formations, i.e. belonging to the same irreducible repre-
sentation (IRREP) of the symmetry group. This consti-
tutes the so-called P space. The operator Q�̃

µ
projects

onto the complementary orthogonal subspace, the so-
called Q space. In the present context, the eigenstates
spanning the latter eigen subspace ofH0 are not assumed
to be known explicitly.

While the ingredients introduced above are state specific
and, as such, depend on the quantum numbers (µ, �̃),
those labels are dropped for the time being to lighten
the notations. Consequently, the targeted eigenstate and
energy of the full Hamiltonian are written as | i and E,
respectively, whereas the unperturbed state and energy
are denoted as |⇥(0)

i and E(0) to typify that they act
as zeroth-order quantities in the perturbative expansion
designed below. The projectors are simply denoted as
P and Q.

The goal is to compute the perturbative corrections to
both |⇥(0)

i and E(0) such that

| i ⌘
1X

k=0

|⇥(k)
i , (10a)

E ⌘

1X

k=0

E(k) , (10b)

where the superscript k indicates that the corresponding
quantity are proportional to the kth power of H1. This
expansion is defined using the so-called intermediate

normalization, i.e.

h⇥(0)
|⇥(k)

i = 0 , 8k � 1 , (11)

such that

h⇥(0)
| i = 1 . (12)

6The two hermitian operators fulfill (P �̃
µ )

2 = P
�̃
µ , (Q

�̃
µ)

2 = Q
�̃
µ

and P
�̃
µQ

�̃
µ = Q

�̃
µP

�̃
µ = 0 such that P

�̃
µ +Q

�̃
µ = 1.

2.2 Perturbative expansion

Rayleigh-Schrödinger perturbation theory [?] allows one
to first expand the exact state and energy as

| i ⌘
1X

m=0

�
X�1Y

�m
|⇥(0)

i , (13a)

E � E(0)
⌘

1X

m=0

h⇥(0)
|H1

�
X�1Y

�m
|⇥(0)

i , (13b)

where

X ⌘ Q

⇣
H0 � E(0)

⌘
Q , (14a)

Y ⌘ Q

⇣
E � E(0)

�H1

⌘
Q . (14b)

The two series do not yet provide the perturbative cor-
rections to the unperturbed quantities because of the
presence of E � E(0) on the right-hand side through Y .
To identify each perturbative contribution, it is neces-
sary to substitute Eq. (13b) for each E � E(0) in the
right-hand-side of Eq. (13) iteratively and sort out the
terms with equal powers of H1. This procedure leads
to7,8

|⇥(1)
i = �Q

⇣
H0 � E(0)

⌘�1
QH1|⇥

(0)
i , (15a)

|⇥(1)
i = �X�1

QH1|⇥
(0)

i , (15b)

|⇥(2)
i = +X�1

QH̄1QX�1
QH1|⇥

(0)
i , (15c)

...

and9

E(1) = h⇥(0)
|H1|⇥

(0)
i , (16a)

E(2) = h⇥(0)
|H1Q|⇥(1)

i

= �h⇥(0)
|H1QX�1

QH1|⇥
(0)

i , (16b)

E(3) = h⇥(0)
|H1Q|⇥(2)

i

= +h⇥(0)
|H1QX�1

QH̄1QX�1
QH1|⇥

(0)
i

= h⇥(1)
|QH̄1Q|⇥(1)

i , (16c)

...

7Starting with |⇥(3)
i and E(4), so-called renormalization terms

arise in addition to the principal term [?].
8The perturbative expansion of the wave operator formally
introduced in Eq. (7) is thus obtained as

⌦[�̃,µ,H1] = 1

� (X�̃

µ )
�1

Q
�̃

µH1

+ (X�̃

µ )
�1

Q
�̃

µH̄1Q
�̃

µ(X
�̃

µ )
�1

Q
�̃

µH1

+ . . .

9Some of the projectors Q are redundant but are kept to make
the systematic structure of the equations more apparent.

4

2 Formal perturbation theory

2.1 Set up

The present work focuses on the perturbative expansion
of the wave operator. Starting from Eqs. (5)-(6), the
two projectors in direct sum6

P
�̃

µ
⌘

X

K

|⇥�̃K

µ
ih⇥�̃K

µ
| , (9a)

Q
�̃

µ
⌘ 1� P

�̃

µ
, (9b)

P ⌘ |⇥(0)
ih⇥(0)

|

Q ⌘ 1� P

are introduced. The operator P �̃

µ
projects on the eigen

subspace of H0 spanned by the unperturbed state along
with the degenerate states obtained via symmetry trans-
formations, i.e. belonging to the same irreducible repre-
sentation (IRREP) of the symmetry group. This consti-
tutes the so-called P space. The operator Q�̃

µ
projects

onto the complementary orthogonal subspace, the so-
called Q space. In the present context, the eigenstates
spanning the latter eigen subspace ofH0 are not assumed
to be known explicitly.

While the ingredients introduced above are state specific
and, as such, depend on the quantum numbers (µ, �̃),
those labels are dropped for the time being to lighten
the notations. Consequently, the targeted eigenstate and
energy of the full Hamiltonian are written as | i and E,
respectively, whereas the unperturbed state and energy
are denoted as |⇥(0)

i and E(0) to typify that they act
as zeroth-order quantities in the perturbative expansion
designed below. The projectors are simply denoted as
P and Q.

The goal is to compute the perturbative corrections to
both |⇥(0)

i and E(0) such that

| i ⌘
1X

k=0

|⇥(k)
i , (10a)

E ⌘

1X

k=0

E(k) , (10b)

where the superscript k indicates that the corresponding
quantity are proportional to the kth power of H1. This
expansion is defined using the so-called intermediate

normalization, i.e.

h⇥(0)
|⇥(k)

i = 0 , 8k � 1 , (11)

such that

h⇥(0)
| i = 1 . (12)

6The two hermitian operators fulfill (P �̃
µ )

2 = P
�̃
µ , (Q

�̃
µ)

2 = Q
�̃
µ

and P
�̃
µQ

�̃
µ = Q

�̃
µP

�̃
µ = 0 such that P

�̃
µ +Q

�̃
µ = 1.

2.2 Perturbative expansion

Rayleigh-Schrödinger perturbation theory [?] allows one
to first expand the exact state and energy as

| i ⌘
1X

m=0

�
X�1Y

�m
|⇥(0)

i , (13a)

E � E(0)
⌘

1X

m=0

h⇥(0)
|H1

�
X�1Y

�m
|⇥(0)

i , (13b)

where

X ⌘ Q

⇣
H0 � E(0)

⌘
Q , (14a)

Y ⌘ Q

⇣
E � E(0)

�H1

⌘
Q . (14b)

The two series do not yet provide the perturbative cor-
rections to the unperturbed quantities because of the
presence of E � E(0) on the right-hand side through Y .
To identify each perturbative contribution, it is neces-
sary to substitute Eq. (13b) for each E � E(0) in the
right-hand-side of Eq. (13) iteratively and sort out the
terms with equal powers of H1. This procedure leads
to7,8

|⇥(1)
i = �Q

⇣
H0 � E(0)

⌘�1
QH1|⇥

(0)
i , (15a)

|⇥(1)
i = �X�1

QH1|⇥
(0)

i , (15b)

|⇥(2)
i = +X�1

QH̄1QX�1
QH1|⇥

(0)
i , (15c)

...

and9

E(1) = h⇥(0)
|H1|⇥

(0)
i , (16a)

E(2) = h⇥(0)
|H1Q|⇥(1)

i

= �h⇥(0)
|H1QX�1

QH1|⇥
(0)

i , (16b)

E(3) = h⇥(0)
|H1Q|⇥(2)

i

= +h⇥(0)
|H1QX�1

QH̄1QX�1
QH1|⇥

(0)
i

= h⇥(1)
|QH̄1Q|⇥(1)

i , (16c)

...

7Starting with |⇥(3)
i and E(4), so-called renormalization terms

arise in addition to the principal term [?].
8The perturbative expansion of the wave operator formally
introduced in Eq. (7) is thus obtained as

⌦[�̃,µ,H1] = 1

� (X�̃

µ )
�1

Q
�̃

µH1

+ (X�̃

µ )
�1

Q
�̃

µH̄1Q
�̃

µ(X
�̃

µ )
�1

Q
�̃

µH1

+ . . .

9Some of the projectors Q are redundant but are kept to make
the systematic structure of the equations more apparent.

where



Perturbative expansion

⦿ Non-orthogonal perturbation theory

○ Construct reference Hamiltonian H0

➝  Build all possible excitations on top of each Bogolyubov state entering             , then
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belonging to Bq✓. This leads to writing the ansatz

|⇥(1)
i ⌘

d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)|�I(q; ✓)i

=
d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)R(✓)|�I(q)i , (49)

where the index I runs over all singly (S), doubly (D),
triply (T). . . excitated Bogoliubov vacua |�I(q; ✓)i de-
fined in Eq. (122). The second line of Eq. (49) has
been obtained thanks to Eq. (124) whereas the coe�-
cients

{aI(q; ✓); q 2 set , ✓ 2 DG and I 2 S,D,T,. . . }

denote the unknowns to be determined.

The fact that, as pointed out in Sec. 3.2.3, the first-order
wave function is given by

|⇥(1)
i ⌘ P �̃

00|⇥̄
(1)

i (50)

fully fixes the dependence of these coe�cients on the
angle ✓ of the order parameter. They must display the
separable form

aI(q; ✓) ⌘ aI(q)D�̃⇤
00 (✓) , (51)

which drastically reduces the cardinality of the set of
coe�cients to

{aI(q); q 2 set and I 2 S,D,T,. . . } .

Explicitly projecting onto Q space to only retain the
orthogonal component to |⇥(0)

i, Eq. (51) is used to
rewrite Eq. (49) under the compact form

|⇥(1)
i =

X

q

X

I

aI(q)|⌦I(q)i , (52)

where the expansion now runs over the reduced set of
non-orthogonal states

|⌦I(q)i ⌘ QP �̃

00|�
I(q)i . (53)

As schematically illustrated in Fig. 3, the first-order
wave-function is thus expanded over (projected) excita-
tions of the HFB vacua carrying di↵erent values of the
norm q of the order parameter.

In principle, all excitation ranks are involved in Eq. (53),
which is unmanageable in practical applications. The
idea is to truncate the expansion based on the fact that
(i) the Hylleraas functional justifies that an approxima-
tion to |⇥(1)

i delivers a variational upper bound to E(2)

that can be systematically improved and on the fact
that (ii) doing so on the basis of Eq. (52) can provide an
optimal approximation. In order to motivate the latter

point, let us further investigate the expression of E(2).
After noticing that26

h⇥(0)
|H1Q = h⇥(0)

|(H �H0)(1� |⇥(0)
ih⇥(0)

|)

= h⇥(0)
|(H � Eref) , (54)

the definition of h⇥(0)
| along with multiple completeness

relations in HA are inserted into Eq. (16b) in order to
write the second-order energy as

E(2) =h⇥(0)
|(H � Eref)|⇥

(1)
i (55)

=
d�̃
vG

X

p✓

f⇤
µ
(p)D�̃

M0(✓)

⇥

X

I2S,D

h�(p; ✓)|(H�Eref)|�
I(p; ✓)ih�I(p; ✓)|⇥(1)

i

where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X

q

X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system

26Because symmetry blocks associated with di↵erent values of
M are explicitly separated throughout the whole formalism as
explained in Sec. 3.2.3, P = |⇥(0)

ih⇥(0)
| is used everywhere

in the following.
27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.
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where the latter equality makes use of the one-body
eigenbasis of F[|�(q)i] and where

E(0)(q) ⌘
AX

i=1

ei(q) . (47)

While the definition of E(0)(q) above is at variance with
the choice made in App. C.8.2 for Møller-Plesset MBPT,
it only shifts H0(q) by a constant such that both expan-
sions match from the first order on. Details of the corre-
sponding expansion are discussed in App. C.8.2.

3.2.5 U(1)-breaking single-reference limit

In the more general case, the set Bq✓ reduces to a
particle-number breaking Bogoliubov state |�(q)i in
the single-reference limit. Formally, Eqs. (44)-(45) still
hold and H0 does not match the unperturbed opera-
tor at play in single-reference Bogoliubov many-body
perturbation theory (BMBPT) [25,46,19,20,47] (see
App. C.8.1).

However, and contrary to Sec. 3.2.4, |�(q)i cannot be
an eigenstate of the U(1)-conserving one-body operator
F such that even in the unconstrained case, i.e. when-
ever �q = 0, the SR reduction of PGCM-PT does not
match Møller-Plesset BMBPT. Correspondingly, and
even though |�(q)i is an eigenstate of H0 by construc-
tion, the eigenstates in Q space di↵er from the elemen-
tary quasi-particle excitations of |�(q)i (Eq. (116)) and
cannot be directly accessed. As a result, the pertur-
bative expansion is less straightforward to implement
than in standard BMBPT where H0 is a generalized,
i.e. particle-number-non-conserving, one-body operator
whose eigenstates are nothing but |�(q)i and its elemen-
tary quasi-particle excitations (see App. C.8.1).

It is of interest to see to what extent the partitionings
at play in (B)MBPT on the one hand and in the SR
reduction of PGCM-PT on the other hand do influence
numerical results. This comparison is performed in Paper
III.

3.3 Application to second order

Now that the unperturbed reference state and the associ-
ated partitioning have been introduced, the perturbative
expansion built according to the formal perturbation
theory recalled in Sec. 2 is specified up to second order,
thus defining the PGCM-PT(2) approximation.

3.3.1 Zeroth and first-order energies

Given the unperturbed state |⇥(0)
i ⌘ |⇥�̃0

µ
i delivered

by Eqs. (27) and (32), the zeroth-order energy is given
by Eq. (37) whereas the first-order energy is obtained
through

Eref = E(0) + E(1)

= h⇥(0)
|H|⇥(0)

i

=
X

pq

f⇤(p)H �̃

p0q0 f(q). (48)

3.3.2 First-order interacting space

According to Eq. (16b), the second-order energy E(2) re-
quires the knowledge of the first-order wave-function. Ac-
cessing |⇥(1)

i is rendered non-trivial by the fact that Q-
space eigenstates of H0 are not known a priori. This dif-
ficulty leads to the necessity to solve Eq. (22) 23.

However, solving Eq. (22) requires the identification of
a suitable basis of Q space, i.e. the appropriate first-

order interacting space over which |⇥(1)
i can be exactly

expanded. In standard single-reference24 perturbation
theories, the first-order wave function is a linear combina-
tion of single and double excitations of the unperturbed
state, i.e. the first-order interacting space is well par-
titioned. In the present case, the PGCM unperturbed
state prevents a straightforward identification of the
first-order interacting space in terms of elementary ex-
citations of a preferred reference vacuum. Indeed, each
excitation of a Bogoliubov product state entering |⇥(0)

i

can have a non-zero overlap with any of the other HFB
vacua making up |⇥(0)

i, and thus with |⇥(0)
i itself. Even-

tually, this means that (i) Q cannot be built explicitly
and that (ii) Eq. (22) cannot be solved exactly. While the
first di�culty can be bypassed by using Eq. (9b) repeat-
edly, the second one requires a procedure to optimally
approximate the first-order interacting space.

Rather than referring to the orthonormal representation
of HA associated with a preferred reference vacuum
and its elementary excitations, one can appropriately
consider the multiple representations built out of each
product state entering |⇥(0)

i, i.e. each Bogoliubov state

23The more elaborate Eq. (21) needs to be solved to access
|⇥(k)

i with k > 1.
24Standard MR perturbation theories rely on an unperturbed
state mixing orthogonal elementary excitations of a common
vacuum state restricted to a certain valence/active space. In
such a situation, the first-order interacting space is also well
partitioned [12] as it is built out of single and double excita-
tions25 outside the valence/active space from each orthogonal
product state entering the unperturbed state wave function.
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which drastically reduces the cardinality of the set of
coe�cients to

{aI(q); q 2 set and I 2 S,D,T,. . . } .

Explicitly projecting onto Q space to only retain the
orthogonal component to |⇥(0)

i, Eq. (51) is used to
rewrite Eq. (49) under the compact form

|⇥(1)
i =

X

q

X

I

aI(q)|⌦I(q)i , (52)

where the expansion now runs over the reduced set of
non-orthogonal states

|⌦I(q)i ⌘ QP �̃

00|�
I(q)i . (53)

As schematically illustrated in Fig. 3, the first-order
wave-function is thus expanded over (projected) excita-
tions of the HFB vacua carrying di↵erent values of the
norm q of the order parameter.

In principle, all excitation ranks are involved in Eq. (53),
which is unmanageable in practical applications. The
idea is to truncate the expansion based on the fact that
(i) the Hylleraas functional justifies that an approxima-
tion to |⇥(1)

i delivers a variational upper bound to E(2)

that can be systematically improved and on the fact
that (ii) doing so on the basis of Eq. (52) can provide an
optimal approximation. In order to motivate the latter

point, let us further investigate the expression of E(2).
After noticing that26

h⇥(0)
|H1Q = h⇥(0)

|(H �H0)(1� |⇥(0)
ih⇥(0)

|)

= h⇥(0)
|(H � Eref) , (54)

the definition of h⇥(0)
| along with multiple completeness

relations in HA are inserted into Eq. (16b) in order to
write the second-order energy as

E(2) =h⇥(0)
|(H � Eref)|⇥

(1)
i (55)

=
d�̃
vG

X

p✓

f⇤
µ
(p)D�̃

M0(✓)

⇥

X

I2S,D

h�(p; ✓)|(H�Eref)|�
I(p; ✓)ih�I(p; ✓)|⇥(1)

i

where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X

q

X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system

26Because symmetry blocks associated with di↵erent values of
M are explicitly separated throughout the whole formalism as
explained in Sec. 3.2.3, P = |⇥(0)

ih⇥(0)
| is used everywhere

in the following.
27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.

Excited Bogolyubov vacua, where
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belonging to Bq✓. This leads to writing the ansatz

|⇥(1)
i ⌘

d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)|�I(q; ✓)i

=
d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)R(✓)|�I(q)i , (49)

where the index I runs over all singly (S), doubly (D),
triply (T). . . excitated Bogoliubov vacua |�I(q; ✓)i de-
fined in Eq. (122). The second line of Eq. (49) has
been obtained thanks to Eq. (124) whereas the coe�-
cients

{aI(q; ✓); q 2 set , ✓ 2 DG and I 2 S,D,T,. . . }

denote the unknowns to be determined.

The fact that, as pointed out in Sec. 3.2.3, the first-order
wave function is given by

|⇥(1)
i ⌘ P �̃

00|⇥̄
(1)

i (50)

fully fixes the dependence of these coe�cients on the
angle ✓ of the order parameter. They must display the
separable form

aI(q; ✓) ⌘ aI(q)D�̃⇤
00 (✓) , (51)

which drastically reduces the cardinality of the set of
coe�cients to

{aI(q); q 2 set and I 2 S,D,T,. . . } .

Explicitly projecting onto Q space to only retain the
orthogonal component to |⇥(0)

i, Eq. (51) is used to
rewrite Eq. (49) under the compact form

|⇥(1)
i =

X

q

X

I

aI(q)|⌦I(q)i , (52)

where the expansion now runs over the reduced set of
non-orthogonal states

|⌦I(q)i ⌘ QP �̃

00|�
I(q)i . (53)

As schematically illustrated in Fig. 3, the first-order
wave-function is thus expanded over (projected) excita-
tions of the HFB vacua carrying di↵erent values of the
norm q of the order parameter.

In principle, all excitation ranks are involved in Eq. (53),
which is unmanageable in practical applications. The
idea is to truncate the expansion based on the fact that
(i) the Hylleraas functional justifies that an approxima-
tion to |⇥(1)

i delivers a variational upper bound to E(2)

that can be systematically improved and on the fact
that (ii) doing so on the basis of Eq. (52) can provide an
optimal approximation. In order to motivate the latter

point, let us further investigate the expression of E(2).
After noticing that26

h⇥(0)
|H1Q = h⇥(0)

|(H �H0)(1� |⇥(0)
ih⇥(0)

|)

= h⇥(0)
|(H � Eref) , (54)

the definition of h⇥(0)
| along with multiple completeness

relations in HA are inserted into Eq. (16b) in order to
write the second-order energy as

E(2) =h⇥(0)
|(H � Eref)|⇥

(1)
i (55)

=
d�̃
vG

X

p✓

f⇤
µ
(p)D�̃

M0(✓)

⇥

X

I2S,D

h�(p; ✓)|(H�Eref)|�
I(p; ✓)ih�I(p; ✓)|⇥(1)

i

where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X

q

X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system

26Because symmetry blocks associated with di↵erent values of
M are explicitly separated throughout the whole formalism as
explained in Sec. 3.2.3, P = |⇥(0)

ih⇥(0)
| is used everywhere

in the following.
27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.
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belonging to Bq✓. This leads to writing the ansatz

|⇥(1)
i ⌘

d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)|�I(q; ✓)i

=
d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)R(✓)|�I(q)i , (49)

where the index I runs over all singly (S), doubly (D),
triply (T). . . excitated Bogoliubov vacua |�I(q; ✓)i de-
fined in Eq. (122). The second line of Eq. (49) has
been obtained thanks to Eq. (124) whereas the coe�-
cients

{aI(q; ✓); q 2 set , ✓ 2 DG and I 2 S,D,T,. . . }

denote the unknowns to be determined.

The fact that, as pointed out in Sec. 3.2.3, the first-order
wave function is given by

|⇥(1)
i ⌘ P �̃

00|⇥̄
(1)

i (50)

fully fixes the dependence of these coe�cients on the
angle ✓ of the order parameter. They must display the
separable form

aI(q; ✓) ⌘ aI(q)D�̃⇤
00 (✓) , (51)

which drastically reduces the cardinality of the set of
coe�cients to

{aI(q); q 2 set and I 2 S,D,T,. . . } .

Explicitly projecting onto Q space to only retain the
orthogonal component to |⇥(0)

i, Eq. (51) is used to
rewrite Eq. (49) under the compact form

|⇥(1)
i =

X

q

X

I

aI(q)|⌦I(q)i , (52)

where the expansion now runs over the reduced set of
non-orthogonal states

|⌦I(q)i ⌘ QP �̃

00|�
I(q)i . (53)

As schematically illustrated in Fig. 3, the first-order
wave-function is thus expanded over (projected) excita-
tions of the HFB vacua carrying di↵erent values of the
norm q of the order parameter.

In principle, all excitation ranks are involved in Eq. (53),
which is unmanageable in practical applications. The
idea is to truncate the expansion based on the fact that
(i) the Hylleraas functional justifies that an approxima-
tion to |⇥(1)

i delivers a variational upper bound to E(2)

that can be systematically improved and on the fact
that (ii) doing so on the basis of Eq. (52) can provide an
optimal approximation. In order to motivate the latter

point, let us further investigate the expression of E(2).
After noticing that26

h⇥(0)
|H1Q = h⇥(0)

|(H �H0)(1� |⇥(0)
ih⇥(0)

|)

= h⇥(0)
|(H � Eref) , (54)

the definition of h⇥(0)
| along with multiple completeness

relations in HA are inserted into Eq. (16b) in order to
write the second-order energy as

E(2) =h⇥(0)
|(H � Eref)|⇥

(1)
i (55)

=
d�̃
vG

X

p✓

f⇤
µ
(p)D�̃

M0(✓)

⇥

X

I2S,D

h�(p; ✓)|(H�Eref)|�
I(p; ✓)ih�I(p; ✓)|⇥(1)

i

where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X

q

X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system

26Because symmetry blocks associated with di↵erent values of
M are explicitly separated throughout the whole formalism as
explained in Sec. 3.2.3, P = |⇥(0)

ih⇥(0)
| is used everywhere

in the following.
27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.
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where H̄1 ⌘ H1 � E(1). The total energy of the unper-
turbed state is defined as

Eref ⌘ h⇥(0)
|H|⇥(0)

i = E(0) + E(1) . (17)

2.3 Computable expression

Working algebraic expressions of |⇥(k)
i and E(k) are

easily obtained in case X is invertible, i.e. if the eigen-
states of H0 in Q space are known, which is not the
case in the present work. Under closer inspection, one
actually needs matrix elements of

A ⌘ �X�1
QH̄1 , (18)

noting in passing that QH̄1|⇥(0)
i = QH1|⇥(0)

i. Since
by definition

Q

⇣
H0 � E(0)

⌘
QA = �QH̄1 , (19)

the matrix A of A is the solution of the system of linear
equations

MA = �H̄1 , (20)

where M ⌘ H0�E(0)1 and where the left matrix index
necessarily belongs to Q space whereas the right index
is either in Q or P space. In expanded form, the linear
system reads, with i 6= 0,
X

k 6=0

MikAkj = �
�
H̄1

�
ij

, (21)

where the sum is restricted to Q-space states. In case
one is only interested in X�1

QH̄1|⇥(0)
i, a simpler linear

system involving the vectors a and h1 made out of the
first column Ak0 and (H1)k0 of A and H1, respectively,
needs to be solved, i.e.

Ma = �h1 . (22)

As discussed in Paper III, a sparse matrix representation
of M makes the iterative solution of the linear equation
system accessible under certain hypothesis for realistic
ab initio nuclear structure calculations.

Given A, the energy corrections can eventually be com-
puted as

E(2) = h⇥(0)
|H1A|⇥(0)

i = h†
1a , (23a)

E(3) = h⇥(0)
|H1A

2
|⇥(0)

i = h†
1Aa = a†H̄1a , (23b)

...

knowing that E(1) = (H1)00.

2.4 Hylleraas functional

Formal perturbation theory can be alternatively derived
through a variational method due to Hylleraas [41,13].
Let us consider a variational ansatz

|⌅i ⌘ |⇥(0)
i+

1X

k=1

|⌅(k)
i , (24)

where h⇥(0)
|⌅(k)

i = 0 8k � 1 and where the variational
component |⌅(k)

i is proportional to Hk

1 . Computing the
expectation of H in |⌅i and sorting the various orders
in H1, Ritz’ variational principle leads to

E E(0) + E(1)

+
h
h⌅(1)

|QH1|⇥
(0)

i+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i

i
+O(H3

1 ) , (25)

For E to be a minimum of the right-hand side expression
for an arbitrary H1, each term associated with a given
power of H1 must be either minimal or constant in order
to indeed reach E. The sum of the corresponding terms
delivers the individual perturbative components E(k) in
Eq. (10b) given the uniqueness of the series in powers
of H1.

Noting that E(0) and E(1) are free from any variational
components, the variational approach starts with the
second-order energy correction E(2) that is the minimum
of the so-called Hylleraas functional

L[⌅(1)] ⌘ h⌅(1)
|QH1|⇥

(0)
i

+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i . (26)

It is straightforward to realize that the saddle-point
of Eq. (26) is obtained for |⌅(1)

i = |⇥(1)
i solution of

Eq. (15a).

This alternative derivation is of interest because it un-
derlines the fact that the use of an approximate ansatz
to the exact solution of Eq. (15a) delivers a variational
estimate10 of E(2).

3 PGCM-PT formalism

The above formal perturbation theory is now speci-
fied to the case where the unperturbed state is gener-
ated through the projected generator coordinate method
(PGCM). The unperturbed state is thus of MR character

10One however obtains a variational upper bound of the exact
eigen energy if and only if E(0) is the lowest eigenvalue of
H0 [13].

where

➝  Introduce state-specific partitioning
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Fig. 2: (color online) Schematic representation of the HFB TES H00(q; ✓) in the two-dimensional plane associated
with the order parameter % = qei✓ of the (intermediately broken) symmetry. Light (dark) blue circles represent
configurations along the q (✓) direction. Left (right) panel: system characterized by a symmetry-conserving
(-breaking) HFB minimum.

3.2.1 Definition

The goal is to design H0 such that PGCM-PT reduces
to standard Møller-Plesset MBPT whenever the PGCM
unperturbed state reduces to a single (unconstrained)
Hartree-Fock (HF) Slater determinant17. To achieve
this goal, one introduces the state-specific partition-
ing

H0 ⌘ P
�̃

µ
F[|⇥i]P

�̃

µ
+Q

�̃

µ
F[|⇥i]Q

�̃

µ
, (34)

where the one-body operator

F[|⇥i] ⌘
X

a1b1

fa1
b1
[|⇥i]Ca1

b1
, (35a)

fa1
b1
[|⇥i] ⌘ ta1

b1
+

X

a2b2

va1a2
b1b2

⇥
⇢⇥

⇤b2
a2

, (35b)

involves the convolution of the two-body interaction
with a symmetry-invariant one-body density matrix18

17This limit is discussed in Sec. 3.2.4. The more subtle cases
where the PGCM unperturbed state reduces to a single con-
strained HF Slater determinant or a single Bogoliubov state
are also discussed.
18In case |⇥i were to denote the exact ground-state of the
system, F[|⇥i] would be nothing else but the so-called Baranger
one-body Hamiltonian [?], which is the energy-independent
part of the one-nucleon self-energy in self-consistent Green’s
function theory [?].

⇥
⇢⇥

⇤b1
a1

⌘
h⇥|Ca1

b1
|⇥i

h⇥|⇥i
, (36)

i.e. a one-body density matrix computed from a symmetry-
conserving state |⇥i

19.

As soon as the PGCM unperturbed state |⇥�

µ
i is not

symmetry-conserving, e.g., it corresponds to an excited
state |⇥�

µ
i of an even-even nucleus with J 6= 0, the

one-body operator F[|⇥i] must necessarily be built from
a di↵erent state |⇥i. In this situation, it is natural to
employ the corresponding symmetry-conserving ground
state20. Contrarily, whenever the PGCM unperturbed
state |⇥�

µ
i is symmetry-conserving, e.g. for the ground

19In the present work, a symmetry-conserving state represents
a state whose associated one-body density matrix is symmetry-
invariant, i.e. belongs to the trivial IRREP of GH . While for
the SU(2) group this requires the many-body state itself to
be symmetry invariant, i.e. to be a J = 0 state, for the U(1)
group this condition is automatically satisfied for the normal
one-body density matrix.
20For odd-even or odd-odd nuclei eigenstates, the symmetry-
invariant density matrix associated with a fake odd system
described in terms of, e.g., a statistical mixture [18,19] can
typically be envisioned.

One-body operator F(𝜌(Θ)) such that Møller-Plesset partitioning is recovered in the single-determinant limit

where

○ Construct first-order wave function

○ Compute second-order energy as a function of  H1 = H - H0  and
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belonging to Bq✓. This leads to writing the ansatz

|⇥(1)
i ⌘

d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)|�I(q; ✓)i

=
d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)R(✓)|�I(q)i , (49)

where the index I runs over all singly (S), doubly (D),
triply (T). . . excitated Bogoliubov vacua |�I(q; ✓)i de-
fined in Eq. (122). The second line of Eq. (49) has
been obtained thanks to Eq. (124) whereas the coe�-
cients

{aI(q; ✓); q 2 set , ✓ 2 DG and I 2 S,D,T,. . . }

denote the unknowns to be determined.

The fact that, as pointed out in Sec. 3.2.3, the first-order
wave function is given by

|⇥(1)
i ⌘ P �̃

00|⇥̄
(1)

i (50)

fully fixes the dependence of these coe�cients on the
angle ✓ of the order parameter. They must display the
separable form

aI(q; ✓) ⌘ aI(q)D�̃⇤
00 (✓) , (51)

which drastically reduces the cardinality of the set of
coe�cients to

{aI(q); q 2 set and I 2 S,D,T,. . . } .

Explicitly projecting onto Q space to only retain the
orthogonal component to |⇥(0)

i, Eq. (51) is used to
rewrite Eq. (49) under the compact form

|⇥(1)
i =

X

q

X

I

aI(q)|⌦I(q)i , (52)

where the expansion now runs over the reduced set of
non-orthogonal states

|⌦I(q)i ⌘ QP �̃

00|�
I(q)i . (53)

As schematically illustrated in Fig. 3, the first-order
wave-function is thus expanded over (projected) excita-
tions of the HFB vacua carrying di↵erent values of the
norm q of the order parameter.

In principle, all excitation ranks are involved in Eq. (53),
which is unmanageable in practical applications. The
idea is to truncate the expansion based on the fact that
(i) the Hylleraas functional justifies that an approxima-
tion to |⇥(1)

i delivers a variational upper bound to E(2)

that can be systematically improved and on the fact
that (ii) doing so on the basis of Eq. (52) can provide an
optimal approximation. In order to motivate the latter

point, let us further investigate the expression of E(2).
After noticing that26

h⇥(0)
|H1Q = h⇥(0)

|(H �H0)(1� |⇥(0)
ih⇥(0)

|)

= h⇥(0)
|(H � Eref) , (54)

the definition of h⇥(0)
| along with multiple completeness

relations in HA are inserted into Eq. (16b) in order to
write the second-order energy as

E(2) =h⇥(0)
|(H � Eref)|⇥

(1)
i (55)

=
d�̃
vG

X

p✓

f⇤
µ
(p)D�̃

M0(✓)

⇥

X

I2S,D

h�(p; ✓)|(H�Eref)|�
I(p; ✓)ih�I(p; ✓)|⇥(1)

i

where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X

q

X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system

26Because symmetry blocks associated with di↵erent values of
M are explicitly separated throughout the whole formalism as
explained in Sec. 3.2.3, P = |⇥(0)

ih⇥(0)
| is used everywhere

in the following.
27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.

11

belonging to Bq✓. This leads to writing the ansatz

|⇥(1)
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X
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X
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X

I

aI(q; ✓)|�I(q; ✓)i

=
d�̃
vG

X

q

X

✓

X

I

aI(q; ✓)R(✓)|�I(q)i , (49)

where the index I runs over all singly (S), doubly (D),
triply (T). . . excitated Bogoliubov vacua |�I(q; ✓)i de-
fined in Eq. (122). The second line of Eq. (49) has
been obtained thanks to Eq. (124) whereas the coe�-
cients

{aI(q; ✓); q 2 set , ✓ 2 DG and I 2 S,D,T,. . . }

denote the unknowns to be determined.

The fact that, as pointed out in Sec. 3.2.3, the first-order
wave function is given by

|⇥(1)
i ⌘ P �̃

00|⇥̄
(1)

i (50)

fully fixes the dependence of these coe�cients on the
angle ✓ of the order parameter. They must display the
separable form

aI(q; ✓) ⌘ aI(q)D�̃⇤
00 (✓) , (51)

which drastically reduces the cardinality of the set of
coe�cients to

{aI(q); q 2 set and I 2 S,D,T,. . . } .

Explicitly projecting onto Q space to only retain the
orthogonal component to |⇥(0)

i, Eq. (51) is used to
rewrite Eq. (49) under the compact form

|⇥(1)
i =

X

q

X

I

aI(q)|⌦I(q)i , (52)

where the expansion now runs over the reduced set of
non-orthogonal states

|⌦I(q)i ⌘ QP �̃

00|�
I(q)i . (53)

As schematically illustrated in Fig. 3, the first-order
wave-function is thus expanded over (projected) excita-
tions of the HFB vacua carrying di↵erent values of the
norm q of the order parameter.

In principle, all excitation ranks are involved in Eq. (53),
which is unmanageable in practical applications. The
idea is to truncate the expansion based on the fact that
(i) the Hylleraas functional justifies that an approxima-
tion to |⇥(1)

i delivers a variational upper bound to E(2)

that can be systematically improved and on the fact
that (ii) doing so on the basis of Eq. (52) can provide an
optimal approximation. In order to motivate the latter

point, let us further investigate the expression of E(2).
After noticing that26

h⇥(0)
|H1Q = h⇥(0)

|(H �H0)(1� |⇥(0)
ih⇥(0)

|)

= h⇥(0)
|(H � Eref) , (54)

the definition of h⇥(0)
| along with multiple completeness

relations in HA are inserted into Eq. (16b) in order to
write the second-order energy as

E(2) =h⇥(0)
|(H � Eref)|⇥

(1)
i (55)

=
d�̃
vG

X

p✓

f⇤
µ
(p)D�̃

M0(✓)

⇥

X

I2S,D

h�(p; ✓)|(H�Eref)|�
I(p; ✓)ih�I(p; ✓)|⇥(1)

i

where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X
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X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system

26Because symmetry blocks associated with di↵erent values of
M are explicitly separated throughout the whole formalism as
explained in Sec. 3.2.3, P = |⇥(0)

ih⇥(0)
| is used everywhere

in the following.
27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.
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which drastically reduces the cardinality of the set of
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Explicitly projecting onto Q space to only retain the
orthogonal component to |⇥(0)

i, Eq. (51) is used to
rewrite Eq. (49) under the compact form

|⇥(1)
i =
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where the expansion now runs over the reduced set of
non-orthogonal states

|⌦I(q)i ⌘ QP �̃
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I(q)i . (53)

As schematically illustrated in Fig. 3, the first-order
wave-function is thus expanded over (projected) excita-
tions of the HFB vacua carrying di↵erent values of the
norm q of the order parameter.

In principle, all excitation ranks are involved in Eq. (53),
which is unmanageable in practical applications. The
idea is to truncate the expansion based on the fact that
(i) the Hylleraas functional justifies that an approxima-
tion to |⇥(1)

i delivers a variational upper bound to E(2)

that can be systematically improved and on the fact
that (ii) doing so on the basis of Eq. (52) can provide an
optimal approximation. In order to motivate the latter

point, let us further investigate the expression of E(2).
After noticing that26

h⇥(0)
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= h⇥(0)
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the definition of h⇥(0)
| along with multiple completeness

relations in HA are inserted into Eq. (16b) in order to
write the second-order energy as
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=
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where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X

q

X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system

26Because symmetry blocks associated with di↵erent values of
M are explicitly separated throughout the whole formalism as
explained in Sec. 3.2.3, P = |⇥(0)

ih⇥(0)
| is used everywhere

in the following.
27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.
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Fig. 3: (color online) Schematic energetic representation as a function of the norm q of the order parameter of
the considered symmetry of excited Bogoliubov states {|�I(q)i; q 2 set and I 2 S,D,T,. . . } employed to expand
|⇥(1)

i. The (red) dotted curve represents the constrained HFB energy H00(q; 0) associated with the vacua Bq =
{|�(q)i; q 2 set} entering the unperturbed PGCM state |⇥(0)

i, and the black bars represent elementary excitations
on top of these vacua. Left (right) panel: system characterized by a symmetry-conserving (-breaking) minimum
of H00(q; 0). In single-reference methods, the problematic gapless symmetry-conserving solution encountered in
open-shell nuclei is replaced by a gentle gapful one by allowing the unperturbed state to spontaneously break the
symmetry.

write the second-order energy as

E(2) =h⇥(0)
|(H � Eref)|⇥
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vG
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h�(p; ✓)|(H�Eref)|�
I(p; ✓)ih�I(p; ✓)|⇥(1)

i

where the excitation rank is naturally truncated given
that the two-body Hamiltonian can at most couple each
vacuum h�(p; ✓)| to its double excitations. E↵ectively,
Eq. (55) demonstrates that any excitated component
of |⇥(1)

i in a given representation of HA can only con-
tribute to E(2) if it corresponds to a linear combination
of single and double excitations associated with a (pos-
sibly) di↵erent representation at play. Looking for the
first-order interacting space spanned by product states
uniquely contributing to E(2), it is thus su�cient to
include single and double excitations from each Bogoli-
ubov state entering |⇥(0)

i. The approximation presently
employed consists thus in replacing Eq. (52) by

|⇥(1)
i =

X

q

X

I2S,D

aI(q)|⌦I(q)i . (56)

3.3.3 Equation of motion

The last step of the process consists in determining the
unknown coe�cients {aI(q); q 2 set and I 2 S,D}. This
is done by solving Eq. (22) according to

X

q

X

J2S,D

MIpJq a
J(q) = �hI

1(p) , (57)

with I 2 S,D. The ansatz in Eq. (56) does constitute an
approximation given that, even if only single and double
excitations contribute to the energy, the coe�cients are
influenced by the presence of higher-rank excitations in
the wave function27. Thus truncating the linear system
to singles and doubles defines the working approximation
that can be variationally and systematically improved
if needed.

27This is similar to the situation encountered in coupled
cluster theory where the energy is a functional of only single
and double amplitudes that are themselves influenced by the
presence of higher-rank amplitudes in the wave-function.
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⦿ Constrained HFB calculations

○ Maps total energy surface (TES)

○ Minimum at strongly deformed configuration

○ TES soft along the octupole direction

6

Fig. 1: Dependence of PHFB results in 20Ne (left column)
and 28Ne (right column) on the employed HO model
space. Results are plotted as a function of ~! for various
values of emax. The dashed lines denote extrapolated
values whereas the grey band provides the associated
uncertainty. The first row (panels (a) and (b)) focuses
on the first 2+ absolute energy whereas the second
(panels (c) and (d)) and third (panels (e) and (f)) rows
provide the ground-state energy and associated rms
charge radius. Calculations employ the N3LO �EFT
Hamiltonian with �srg = 1.88 fm�1.

isotopes. In this test, the HFB minimum in the (q20, q30)
plane, systematically obtained at �3 = 0 (see Sec. 3.2.1
below), is projected on good neutron and proton num-
bers as well as on the desired angular momentum J .
Results for two representative examples, 20Ne and 28Ne,
are displayed in Fig. 1 for the ground-state energy and

Fig. 2: (Color online) Constrained HFB TES of 20Ne in
the axial (�2,�3) plane. The (red) full line indicates the
lowest-energy path, with the arrow positioned at the
minimum of the TES. The (red) dots characterize the set
of HFB states used in the subsequent PGCM calculation.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

the root-mean-square (rms) charge radius, as well as for
the absolute energy of the first 2+ state.

The three observables show a typical convergence pat-
tern consisting of curves that gradually become inde-
pendent of ~! and closer to each others as the basis
size increases. At each step of the way, the HO fre-
quency delivering the least sensitive results to emax,
i.e. the results that are closest to the converged value,
is given by ~! = 12MeV. Taking the least favorable
case, i.e. 28Ne, the energy of the first 0+ (2+) changes
by 70 keV (72 keV) when going from emax = 10 to
emax = 12 whereas the ground-state charge radius in-
creases by 10�4 fm. Taking the results displayed in Fig. 1
for ~! � 12MeV, their infra-red extrapolation towards
the infinite basis limit is performed according to the
procedure described in Ref. [45] for both energies and
radii. The result of the extrapolation is also displayed,
along with its uncertainty, in Fig. 1.

All PGCM results presented in the following have been
obtained for (~!, emax, e3max) = (12, 10, 14). In most
of the figures shown below, these nominal values are
displayed with an error bar associated with the model
space convergence obtained by adding, in the sense ex-
plained in footnote 5, the distance to the extrapolated
result and the uncertainty on the latter. Focusing again
on the least favorable case, i.e. 28Ne, model-space un-
certainties on the nominal energy of the first 0+ and

1. Constrained HFB

20Ne



20Ne

⦿ Projected HFB calculations

○ Projections favour deformed configurations

○ Negative parity states accessed

○ Provide input for computing PGCM state

6

Fig. 1: Dependence of PHFB results in 20Ne (left column)
and 28Ne (right column) on the employed HO model
space. Results are plotted as a function of ~! for various
values of emax. The dashed lines denote extrapolated
values whereas the grey band provides the associated
uncertainty. The first row (panels (a) and (b)) focuses
on the first 2+ absolute energy whereas the second
(panels (c) and (d)) and third (panels (e) and (f)) rows
provide the ground-state energy and associated rms
charge radius. Calculations employ the N3LO �EFT
Hamiltonian with �srg = 1.88 fm�1.
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bers as well as on the desired angular momentum J .
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are displayed in Fig. 1 for the ground-state energy and
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the axial (�2,�3) plane. The (red) full line indicates the
lowest-energy path, with the arrow positioned at the
minimum of the TES. The (red) dots characterize the set
of HFB states used in the subsequent PGCM calculation.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

the root-mean-square (rms) charge radius, as well as for
the absolute energy of the first 2+ state.

The three observables show a typical convergence pat-
tern consisting of curves that gradually become inde-
pendent of ~! and closer to each others as the basis
size increases. At each step of the way, the HO fre-
quency delivering the least sensitive results to emax,
i.e. the results that are closest to the converged value,
is given by ~! = 12MeV. Taking the least favorable
case, i.e. 28Ne, the energy of the first 0+ (2+) changes
by 70 keV (72 keV) when going from emax = 10 to
emax = 12 whereas the ground-state charge radius in-
creases by 10�4 fm. Taking the results displayed in Fig. 1
for ~! � 12MeV, their infra-red extrapolation towards
the infinite basis limit is performed according to the
procedure described in Ref. [45] for both energies and
radii. The result of the extrapolation is also displayed,
along with its uncertainty, in Fig. 1.

All PGCM results presented in the following have been
obtained for (~!, emax, e3max) = (12, 10, 14). In most
of the figures shown below, these nominal values are
displayed with an error bar associated with the model
space convergence obtained by adding, in the sense ex-
plained in footnote 5, the distance to the extrapolated
result and the uncertainty on the latter. Focusing again
on the least favorable case, i.e. 28Ne, model-space un-
certainties on the nominal energy of the first 0+ and

1. Constrained HFB 2. Projected HFB
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Fig. 3: (Color online) Projected HFB TES of 20Ne in the axial (�2,�3) plane for spin-parity values J⇡ =
0+, 1�, 2+, . . . , 7�. In each case, the minimum of the TES is indicated by a (red) star. Calculations employ the
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

2+ states are 830 keV (0.7%) and 810 keV (0.7%), re-
spectively, whereas the uncertainty on the ground-state
charge radius is 0.02 fm (0.7%).

Furthermore, the impact of e3max has been studied by
varying the truncation parameter in the range e3max =
8� 14 for selected observables. Overall, both energies
and radii are found to be well converged with respect to
e3max, with changes between e3max = 12 and 14 amount-
ing in the least favorable cases to 2-300 keV for total
binding energies and 10�3 fm for charge radii. These
uncertainties can be thus e↵ectively incorporated in the
larger ones resulting from the infinite-basis extrapolation
discussed above.

Given that model-space uncertainties tend to cancel out
in excitation spectra, the errors on the latter are typi-
cally smaller than for absolute energies. One must note
that model-space uncertainties of the nominal calcula-
tions are sub-leading compared to the error associated
with the rank-reduction of the three-nucleon interaction
whose maximal value along the Ne chain has been eval-
uated to be respectively 2.5% and 2.6% for the ground-
state charge radius and low-lying excitation energies of
30Ne [15].

3.2 20Ne

The present study focuses first on the stable 20Ne isotope.
This nucleus has been extensively studied experimentally
and theoretically in the past [46,47], in part because it
is one of the few nuclei displaying a strong admixture of
cluster configurations in the ground state. The ab initio
description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately
capture both dynamical and static correlations.

3.2.1 Total energy surfaces

Figure 2 displays the HFB TES of 20Ne in the axial
(�2,�3) plane. The energy minimum is found for the
reflection-symmetric prolate shape characterized by de-
formation parameters (�2 = 0.57, �3 = 0). Still, the
TES is more shallow in the octupole direction than
in the quadrupole direction such that one may antic-
ipate octupole shape fluctuations in the ground-state
and an octupole vibration at an energy lower than the
quadrupole one.

Figure 3 shows the PHFB TES in the axial (�2,�3)
plane for spin-parity J⇡ = 0+, 1�, 2+, . . . , 7�. Each
HFB state is projected onto neutron and proton num-
bers (N,Z) = (10, 10) using N'n = N'p = 7 mesh
points in the interval 'n,p 2 [0,⇡]. The projection on
good angular momentum involves N� = 20 Euler angles
in the interval '� 2 [0,⇡]. Static correlations associated
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that model-space uncertainties of the nominal calcula-
tions are sub-leading compared to the error associated
with the rank-reduction of the three-nucleon interaction
whose maximal value along the Ne chain has been eval-
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(�2,�3) plane. The energy minimum is found for the
reflection-symmetric prolate shape characterized by de-
formation parameters (�2 = 0.57, �3 = 0). Still, the
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Fig. 4: (Color online) Collective PGCM wave-functions in the axial (�2,�3) plane of low-lying positive- and
negative-parity states. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 5: (Color online) Low-lying positive- and negative-parity bands in 20Ne. The intra-band E2 transition strengths
(in e2fm4) are indicated along vertical arrows whereas a selection of E3 transition strengths (in e3fm6) are indicated
along oblique lines. Panel (a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of
freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the minimum of the 0+ TES
located at (�2 = 0.75, �3 = 0.53) (see Fig. 3). Panel (c): PGCM results obtained using the set of points in the axial
(�2,�3) plane displayed in Fig. 2. Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in
panel (c) display model-space (black box) plus �EFT (pink band) uncertainties. IM-NCSM results in panel (d)
display total many-body (black box) plus �EFT (pink band) uncertainties. The N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three
di↵erent HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.

⦿ PGCM mixing

○ Collective w.f.  ➝  admixture of PHFB states

○ Significant shape fluctuations

○ Negative parities mix more deformations

2. Projected HFB
6

Fig. 1: Dependence of PHFB results in 20Ne (left column)
and 28Ne (right column) on the employed HO model
space. Results are plotted as a function of ~! for various
values of emax. The dashed lines denote extrapolated
values whereas the grey band provides the associated
uncertainty. The first row (panels (a) and (b)) focuses
on the first 2+ absolute energy whereas the second
(panels (c) and (d)) and third (panels (e) and (f)) rows
provide the ground-state energy and associated rms
charge radius. Calculations employ the N3LO �EFT
Hamiltonian with �srg = 1.88 fm�1.

isotopes. In this test, the HFB minimum in the (q20, q30)
plane, systematically obtained at �3 = 0 (see Sec. 3.2.1
below), is projected on good neutron and proton num-
bers as well as on the desired angular momentum J .
Results for two representative examples, 20Ne and 28Ne,
are displayed in Fig. 1 for the ground-state energy and

Fig. 2: (Color online) Constrained HFB TES of 20Ne in
the axial (�2,�3) plane. The (red) full line indicates the
lowest-energy path, with the arrow positioned at the
minimum of the TES. The (red) dots characterize the set
of HFB states used in the subsequent PGCM calculation.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

the root-mean-square (rms) charge radius, as well as for
the absolute energy of the first 2+ state.

The three observables show a typical convergence pat-
tern consisting of curves that gradually become inde-
pendent of ~! and closer to each others as the basis
size increases. At each step of the way, the HO fre-
quency delivering the least sensitive results to emax,
i.e. the results that are closest to the converged value,
is given by ~! = 12MeV. Taking the least favorable
case, i.e. 28Ne, the energy of the first 0+ (2+) changes
by 70 keV (72 keV) when going from emax = 10 to
emax = 12 whereas the ground-state charge radius in-
creases by 10�4 fm. Taking the results displayed in Fig. 1
for ~! � 12MeV, their infra-red extrapolation towards
the infinite basis limit is performed according to the
procedure described in Ref. [45] for both energies and
radii. The result of the extrapolation is also displayed,
along with its uncertainty, in Fig. 1.

All PGCM results presented in the following have been
obtained for (~!, emax, e3max) = (12, 10, 14). In most
of the figures shown below, these nominal values are
displayed with an error bar associated with the model
space convergence obtained by adding, in the sense ex-
plained in footnote 5, the distance to the extrapolated
result and the uncertainty on the latter. Focusing again
on the least favorable case, i.e. 28Ne, model-space un-
certainties on the nominal energy of the first 0+ and
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Fig. 3: (Color online) Projected HFB TES of 20Ne in the axial (�2,�3) plane for spin-parity values J⇡ =
0+, 1�, 2+, . . . , 7�. In each case, the minimum of the TES is indicated by a (red) star. Calculations employ the
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

2+ states are 830 keV (0.7%) and 810 keV (0.7%), re-
spectively, whereas the uncertainty on the ground-state
charge radius is 0.02 fm (0.7%).

Furthermore, the impact of e3max has been studied by
varying the truncation parameter in the range e3max =
8� 14 for selected observables. Overall, both energies
and radii are found to be well converged with respect to
e3max, with changes between e3max = 12 and 14 amount-
ing in the least favorable cases to 2-300 keV for total
binding energies and 10�3 fm for charge radii. These
uncertainties can be thus e↵ectively incorporated in the
larger ones resulting from the infinite-basis extrapolation
discussed above.

Given that model-space uncertainties tend to cancel out
in excitation spectra, the errors on the latter are typi-
cally smaller than for absolute energies. One must note
that model-space uncertainties of the nominal calcula-
tions are sub-leading compared to the error associated
with the rank-reduction of the three-nucleon interaction
whose maximal value along the Ne chain has been eval-
uated to be respectively 2.5% and 2.6% for the ground-
state charge radius and low-lying excitation energies of
30Ne [15].

3.2 20Ne

The present study focuses first on the stable 20Ne isotope.
This nucleus has been extensively studied experimentally
and theoretically in the past [46,47], in part because it
is one of the few nuclei displaying a strong admixture of
cluster configurations in the ground state. The ab initio
description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately
capture both dynamical and static correlations.

3.2.1 Total energy surfaces

Figure 2 displays the HFB TES of 20Ne in the axial
(�2,�3) plane. The energy minimum is found for the
reflection-symmetric prolate shape characterized by de-
formation parameters (�2 = 0.57, �3 = 0). Still, the
TES is more shallow in the octupole direction than
in the quadrupole direction such that one may antic-
ipate octupole shape fluctuations in the ground-state
and an octupole vibration at an energy lower than the
quadrupole one.

Figure 3 shows the PHFB TES in the axial (�2,�3)
plane for spin-parity J⇡ = 0+, 1�, 2+, . . . , 7�. Each
HFB state is projected onto neutron and proton num-
bers (N,Z) = (10, 10) using N'n = N'p = 7 mesh
points in the interval 'n,p 2 [0,⇡]. The projection on
good angular momentum involves N� = 20 Euler angles
in the interval '� 2 [0,⇡]. Static correlations associated
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is one of the few nuclei displaying a strong admixture of
cluster configurations in the ground state. The ab initio
description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately
capture both dynamical and static correlations.
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(�2,�3) plane. The energy minimum is found for the
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formation parameters (�2 = 0.57, �3 = 0). Still, the
TES is more shallow in the octupole direction than
in the quadrupole direction such that one may antic-
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and an octupole vibration at an energy lower than the
quadrupole one.
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HFB state is projected onto neutron and proton num-
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good angular momentum involves N� = 20 Euler angles
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Fig. 4: (Color online) Collective PGCM wave-functions in the axial (�2,�3) plane of low-lying positive- and
negative-parity states. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 5: (Color online) Low-lying positive- and negative-parity bands in 20Ne. The intra-band E2 transition strengths
(in e2fm4) are indicated along vertical arrows whereas a selection of E3 transition strengths (in e3fm6) are indicated
along oblique lines. Panel (a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of
freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the minimum of the 0+ TES
located at (�2 = 0.75, �3 = 0.53) (see Fig. 3). Panel (c): PGCM results obtained using the set of points in the axial
(�2,�3) plane displayed in Fig. 2. Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in
panel (c) display model-space (black box) plus �EFT (pink band) uncertainties. IM-NCSM results in panel (d)
display total many-body (black box) plus �EFT (pink band) uncertainties. The N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three
di↵erent HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.

20Ne
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Fig. 6: (Color online) Point matter distribution of 20Ne in the x-y plane corresponding to three constrained HFB
configurations located at (i) (�2 = 0.7, �3 = 0), (ii) (�2 = 0.7, �3 = 0.9) and (iii) (�2 = 1.2, �3 = 1.2) in the axial
(�2, �3) plane. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 7: (Color online) Spherical HFB, PGCM and experi-
mental 20Ne ground-state charge density distributions in
linear (upper panel) and logarithmic (lower panel) scales.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

plane in Fig. 6. The three chosen configurations cor-
respond to (i) the maximum of the 0+ ground-state
collective wave-function (�2 = 0.7, �3 = 0), (ii) the
half-maximum of the 0+ ground-state collective wave-
function with the largest octupole deformation (�2 = 0.7,
�3 = 0.9) and (iii) the maximum of the 1� state collec-
tive wave-function (�2 = 1.2, �3 = 1.2). Panels (i) and
(ii) demonstrate that the ground-state not only displays
clustering but actually mixes configurations ranging

from a dominant compact ↵ +12 C + ↵ structure to a
sub-leading quasi-16C+ ↵ structure. Panel (iii) proves
that the low-lying negative parity band is built out of a
proper 16C+ ↵ cluster structure.

Of course, intrinsic cluster structures are not observ-
able per se and can only be probed indirectly. Still, the
observable charge density distribution displays finger-
prints of many-body correlations among which are the
strong static correlations associated with intrinsic shape
deformation and fluctuation. In order to illustrate this
feature, the radial PGCM charge density distribution of
the 0+ ground-state is compared to experimental data
and to the charge density computed from the spherical
HFB (sHFB) configuration in Fig. 7. Charge density
distributions with respect to the center of mass are
obtained from point-proton and point-neutron density
distributions according to the procedure described in
App. D. As visible from the upper panel of Fig. 7, the
PGCM charge density reproduces very satisfactorily the
experimental data. While it is too low in the center of
the nucleus, many-body correlations partly fill up the
artificial depletion displayed at the nuclear center by
the sHFB density and suppress the latter accordingly
in the interval r 2 [1, 2] fm. Furthermore, static correla-
tions associated with shape deformation and fluctuation
increase the charge density distribution in the interval
r 2 [4, 5] fm to improve the agreement with experimental
data. However, and as visible in the lower panel of Fig. 7,
the long tail part of the PGCM density overshoots the
experimental density. This is consistent with both the
too low two-neutron separation energy and the too high
rms charge radius rch discussed later on.

3.3 Isotopic chain

The PGCM spectroscopic results obtained in the non-
trivial 20Ne isotope are very encouraging. In order to

10

Fig. 6: (Color online) Point matter distribution of 20Ne in the x-y plane corresponding to three constrained HFB
configurations located at (i) (�2 = 0.7, �3 = 0), (ii) (�2 = 0.7, �3 = 0.9) and (iii) (�2 = 1.2, �3 = 1.2) in the axial
(�2, �3) plane. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 7: (Color online) Spherical HFB, PGCM and experi-
mental 20Ne ground-state charge density distributions in
linear (upper panel) and logarithmic (lower panel) scales.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

plane in Fig. 6. The three chosen configurations cor-
respond to (i) the maximum of the 0+ ground-state
collective wave-function (�2 = 0.7, �3 = 0), (ii) the
half-maximum of the 0+ ground-state collective wave-
function with the largest octupole deformation (�2 = 0.7,
�3 = 0.9) and (iii) the maximum of the 1� state collec-
tive wave-function (�2 = 1.2, �3 = 1.2). Panels (i) and
(ii) demonstrate that the ground-state not only displays
clustering but actually mixes configurations ranging

from a dominant compact ↵ +12 C + ↵ structure to a
sub-leading quasi-16C+ ↵ structure. Panel (iii) proves
that the low-lying negative parity band is built out of a
proper 16C+ ↵ cluster structure.

Of course, intrinsic cluster structures are not observ-
able per se and can only be probed indirectly. Still, the
observable charge density distribution displays finger-
prints of many-body correlations among which are the
strong static correlations associated with intrinsic shape
deformation and fluctuation. In order to illustrate this
feature, the radial PGCM charge density distribution of
the 0+ ground-state is compared to experimental data
and to the charge density computed from the spherical
HFB (sHFB) configuration in Fig. 7. Charge density
distributions with respect to the center of mass are
obtained from point-proton and point-neutron density
distributions according to the procedure described in
App. D. As visible from the upper panel of Fig. 7, the
PGCM charge density reproduces very satisfactorily the
experimental data. While it is too low in the center of
the nucleus, many-body correlations partly fill up the
artificial depletion displayed at the nuclear center by
the sHFB density and suppress the latter accordingly
in the interval r 2 [1, 2] fm. Furthermore, static correla-
tions associated with shape deformation and fluctuation
increase the charge density distribution in the interval
r 2 [4, 5] fm to improve the agreement with experimental
data. However, and as visible in the lower panel of Fig. 7,
the long tail part of the PGCM density overshoots the
experimental density. This is consistent with both the
too low two-neutron separation energy and the too high
rms charge radius rch discussed later on.

3.3 Isotopic chain

The PGCM spectroscopic results obtained in the non-
trivial 20Ne isotope are very encouraging. In order to

10

Fig. 6: (Color online) Point matter distribution of 20Ne in the x-y plane corresponding to three constrained HFB
configurations located at (i) (�2 = 0.7, �3 = 0), (ii) (�2 = 0.7, �3 = 0.9) and (iii) (�2 = 1.2, �3 = 1.2) in the axial
(�2, �3) plane. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 7: (Color online) Spherical HFB, PGCM and experi-
mental 20Ne ground-state charge density distributions in
linear (upper panel) and logarithmic (lower panel) scales.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

plane in Fig. 6. The three chosen configurations cor-
respond to (i) the maximum of the 0+ ground-state
collective wave-function (�2 = 0.7, �3 = 0), (ii) the
half-maximum of the 0+ ground-state collective wave-
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experimental data. While it is too low in the center of
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artificial depletion displayed at the nuclear center by
the sHFB density and suppress the latter accordingly
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tions associated with shape deformation and fluctuation
increase the charge density distribution in the interval
r 2 [4, 5] fm to improve the agreement with experimental
data. However, and as visible in the lower panel of Fig. 7,
the long tail part of the PGCM density overshoots the
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rms charge radius rch discussed later on.

3.3 Isotopic chain
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Fig. 4: (Color online) Collective PGCM wave-functions in the axial (�2,�3) plane of low-lying positive- and
negative-parity states. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 5: (Color online) Low-lying positive- and negative-parity bands in 20Ne. The intra-band E2 transition strengths
(in e2fm4) are indicated along vertical arrows whereas a selection of E3 transition strengths (in e3fm6) are indicated
along oblique lines. Panel (a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of
freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the minimum of the 0+ TES
located at (�2 = 0.75, �3 = 0.53) (see Fig. 3). Panel (c): PGCM results obtained using the set of points in the axial
(�2,�3) plane displayed in Fig. 2. Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in
panel (c) display model-space (black box) plus �EFT (pink band) uncertainties. IM-NCSM results in panel (d)
display total many-body (black box) plus �EFT (pink band) uncertainties. The N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three
di↵erent HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.
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Fig. 1: Dependence of PHFB results in 20Ne (left column)
and 28Ne (right column) on the employed HO model
space. Results are plotted as a function of ~! for various
values of emax. The dashed lines denote extrapolated
values whereas the grey band provides the associated
uncertainty. The first row (panels (a) and (b)) focuses
on the first 2+ absolute energy whereas the second
(panels (c) and (d)) and third (panels (e) and (f)) rows
provide the ground-state energy and associated rms
charge radius. Calculations employ the N3LO �EFT
Hamiltonian with �srg = 1.88 fm�1.

isotopes. In this test, the HFB minimum in the (q20, q30)
plane, systematically obtained at �3 = 0 (see Sec. 3.2.1
below), is projected on good neutron and proton num-
bers as well as on the desired angular momentum J .
Results for two representative examples, 20Ne and 28Ne,
are displayed in Fig. 1 for the ground-state energy and

Fig. 2: (Color online) Constrained HFB TES of 20Ne in
the axial (�2,�3) plane. The (red) full line indicates the
lowest-energy path, with the arrow positioned at the
minimum of the TES. The (red) dots characterize the set
of HFB states used in the subsequent PGCM calculation.
Calculations employ the N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1.

the root-mean-square (rms) charge radius, as well as for
the absolute energy of the first 2+ state.

The three observables show a typical convergence pat-
tern consisting of curves that gradually become inde-
pendent of ~! and closer to each others as the basis
size increases. At each step of the way, the HO fre-
quency delivering the least sensitive results to emax,
i.e. the results that are closest to the converged value,
is given by ~! = 12MeV. Taking the least favorable
case, i.e. 28Ne, the energy of the first 0+ (2+) changes
by 70 keV (72 keV) when going from emax = 10 to
emax = 12 whereas the ground-state charge radius in-
creases by 10�4 fm. Taking the results displayed in Fig. 1
for ~! � 12MeV, their infra-red extrapolation towards
the infinite basis limit is performed according to the
procedure described in Ref. [45] for both energies and
radii. The result of the extrapolation is also displayed,
along with its uncertainty, in Fig. 1.

All PGCM results presented in the following have been
obtained for (~!, emax, e3max) = (12, 10, 14). In most
of the figures shown below, these nominal values are
displayed with an error bar associated with the model
space convergence obtained by adding, in the sense ex-
plained in footnote 5, the distance to the extrapolated
result and the uncertainty on the latter. Focusing again
on the least favorable case, i.e. 28Ne, model-space un-
certainties on the nominal energy of the first 0+ and
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Fig. 3: (Color online) Projected HFB TES of 20Ne in the axial (�2,�3) plane for spin-parity values J⇡ =
0+, 1�, 2+, . . . , 7�. In each case, the minimum of the TES is indicated by a (red) star. Calculations employ the
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

2+ states are 830 keV (0.7%) and 810 keV (0.7%), re-
spectively, whereas the uncertainty on the ground-state
charge radius is 0.02 fm (0.7%).

Furthermore, the impact of e3max has been studied by
varying the truncation parameter in the range e3max =
8� 14 for selected observables. Overall, both energies
and radii are found to be well converged with respect to
e3max, with changes between e3max = 12 and 14 amount-
ing in the least favorable cases to 2-300 keV for total
binding energies and 10�3 fm for charge radii. These
uncertainties can be thus e↵ectively incorporated in the
larger ones resulting from the infinite-basis extrapolation
discussed above.

Given that model-space uncertainties tend to cancel out
in excitation spectra, the errors on the latter are typi-
cally smaller than for absolute energies. One must note
that model-space uncertainties of the nominal calcula-
tions are sub-leading compared to the error associated
with the rank-reduction of the three-nucleon interaction
whose maximal value along the Ne chain has been eval-
uated to be respectively 2.5% and 2.6% for the ground-
state charge radius and low-lying excitation energies of
30Ne [15].

3.2 20Ne

The present study focuses first on the stable 20Ne isotope.
This nucleus has been extensively studied experimentally
and theoretically in the past [46,47], in part because it
is one of the few nuclei displaying a strong admixture of
cluster configurations in the ground state. The ab initio
description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately
capture both dynamical and static correlations.

3.2.1 Total energy surfaces

Figure 2 displays the HFB TES of 20Ne in the axial
(�2,�3) plane. The energy minimum is found for the
reflection-symmetric prolate shape characterized by de-
formation parameters (�2 = 0.57, �3 = 0). Still, the
TES is more shallow in the octupole direction than
in the quadrupole direction such that one may antic-
ipate octupole shape fluctuations in the ground-state
and an octupole vibration at an energy lower than the
quadrupole one.

Figure 3 shows the PHFB TES in the axial (�2,�3)
plane for spin-parity J⇡ = 0+, 1�, 2+, . . . , 7�. Each
HFB state is projected onto neutron and proton num-
bers (N,Z) = (10, 10) using N'n = N'p = 7 mesh
points in the interval 'n,p 2 [0,⇡]. The projection on
good angular momentum involves N� = 20 Euler angles
in the interval '� 2 [0,⇡]. Static correlations associated
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cluster configurations in the ground state. The ab initio
description of this doubly open-shell nucleus is thus
a challenge given that it is necessary to appropriately
capture both dynamical and static correlations.
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Figure 2 displays the HFB TES of 20Ne in the axial
(�2,�3) plane. The energy minimum is found for the
reflection-symmetric prolate shape characterized by de-
formation parameters (�2 = 0.57, �3 = 0). Still, the
TES is more shallow in the octupole direction than
in the quadrupole direction such that one may antic-
ipate octupole shape fluctuations in the ground-state
and an octupole vibration at an energy lower than the
quadrupole one.

Figure 3 shows the PHFB TES in the axial (�2,�3)
plane for spin-parity J⇡ = 0+, 1�, 2+, . . . , 7�. Each
HFB state is projected onto neutron and proton num-
bers (N,Z) = (10, 10) using N'n = N'p = 7 mesh
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Fig. 4: (Color online) Collective PGCM wave-functions in the axial (�2,�3) plane of low-lying positive- and
negative-parity states. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 5: (Color online) Low-lying positive- and negative-parity bands in 20Ne. The intra-band E2 transition strengths
(in e2fm4) are indicated along vertical arrows whereas a selection of E3 transition strengths (in e3fm6) are indicated
along oblique lines. Panel (a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of
freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the minimum of the 0+ TES
located at (�2 = 0.75, �3 = 0.53) (see Fig. 3). Panel (c): PGCM results obtained using the set of points in the axial
(�2,�3) plane displayed in Fig. 2. Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in
panel (c) display model-space (black box) plus �EFT (pink band) uncertainties. IM-NCSM results in panel (d)
display total many-body (black box) plus �EFT (pink band) uncertainties. The N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three
di↵erent HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.

20Ne



20Ne

⦿ PGCM excitation spectrum

○ Reference: in-medium no-core shell model (IM-NCSM)   [Mongelli & Roth]

9

Fig. 4: (Color online) Collective PGCM wave-functions in the axial (�2,�3) plane of low-lying positive- and
negative-parity states. Calculations employ the N3LO �EFT Hamiltonian with �srg = 1.88 fm�1.

Fig. 5: (Color online) Low-lying positive- and negative-parity bands in 20Ne. The intra-band E2 transition strengths
(in e2fm4) are indicated along vertical arrows whereas a selection of E3 transition strengths (in e3fm6) are indicated
along oblique lines. Panel (a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of
freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the minimum of the 0+ TES
located at (�2 = 0.75, �3 = 0.53) (see Fig. 3). Panel (c): PGCM results obtained using the set of points in the axial
(�2,�3) plane displayed in Fig. 2. Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in
panel (c) display model-space (black box) plus �EFT (pink band) uncertainties. IM-NCSM results in panel (d)
display total many-body (black box) plus �EFT (pink band) uncertainties. The N3LO �EFT Hamiltonian with
�srg = 1.88 fm�1 is employed in PGCM and IM-NCSM calculations.

3.2.3 Density distributions

Point matter densities of 20Ne associated with three
di↵erent HFB configurations are displayed in the x-y

6While IM-NCSM energies and radii are very robust, it is
less clear for B(E2) values at this point in time such that the
reference should be taken with a grain of salt.
7Excitation energies of the positive parity band were however
slightly worse than in the present calculation.

PGCM IM-NCSM ExperimentPGCM 1D PHFB

➝  Good agreement with experiment and (quasi-)exact IM-NCSM

➝  Exaggerated collectivity [B(E2) systematically larger than experiment]

➝  Essential static correlations captured by PGCM

➝  Restricting PGCM to 1D or PHFB deteriorates spectrum



Neon chain
12

Fig. 9: (Color online) Absolute ground-state ener-
gies (upper panel) and two-neutron separation ener-
gies (lower panel) along the Ne isotopic chain. Re-
sults from HFB, PGCM, BMBPT and IM-NCSM cal-
culations are compared to experimental data. The
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1 is
employed in HFB/PGCM/BMBPT/IM-NCSM calcula-
tions. BMBPT calculations are performed with emax =
10.

that is obviously due to missing dynamical correlations.
While the goal is to bring in these correlations within a
symmetry-conserving scheme, i.e. on top of the PGCM
unperturbed state via PGCM-PT [1], their e↵ect can
already be appreciated through the results of single-
reference Bogoliubov many-body perturbation theory
(BMBPT) [54,55,56,57,58] calculations performed on
top of a deformed HFB reference state9 that are dis-
played in Fig. 9. The bulk of correlations is indeed recov-
ered at the BMBPT(3) level, and we note that the gain
in energy increases with neutron number and therefore
corrects the overall trend at the same time. BMBPT(3)
energies are still about 7�15MeV away from IM-NCSM
and experimental values, which is similar in magnitude
to the static correlations gained via symmetry restora-

9First results of this kind were presented in Ref. [15].

tions and shape fluctuations within the PGCM10. Thus
the consistent “sum” of static and dynamical correla-
tions accessible via PGCM-PT can be expected to bring
the absolute values very close to IM-NCSM results; see
Paper III for a related discussion.

The lower panel of Fig. 9 displays two-neutron sepa-
ration energies S2n to appreciate the stability of Ne
isotopes against two-neutron emission. The IM-NCSM
results reproduce experimental data well within uncer-
tainties, with the exception of 30Ne, which shows the
aforementioned anomaly leading to a slightly negative
central value with a sizable error bar that almost over-
laps with experiment. Consistently with the too flat
curve in the upper panel, PGCM S2n are too low across
the chain such that the drip-line is wrongly predicted
to be located at 30Ne instead of 34Ne [59]. While static
collective correlations captured through PGCM have no
impact on the S2n, the comparison with IM-NCSM (or
CCSDT-1) results underlines the importance of dynam-
ical correlations to reproduce the evolution of binding
energies with neutron number. As a matter of fact, dy-
namical correlations brought in at the BMBPT(3) level
correct for the wrong trend of HFB binding energies
such that the S2ns become perfectly consistent with
IM-NCSM results and experimental data. Once again,
there is no obvious reason to believe that consistently
correcting PGCM results for dynamical correlations will
not bring the same benefit.

To further put the binding energy evolution in per-
spective within our theoretical scheme, Fig. 10 displays
the evolution of neutron and proton (non-observable)
Baranger’s spherical shell structure [60,61] along the
Neon chain for both spherical HFB and PGCM 0+

ground states11. The last occupied orbit associated with
a naive filling of the shells is indicated with a black dot
for each isotope. One first observes that static corre-
lations do tend to compress the spectrum around the
Fermi energy but without changing it qualitatively here.
The most important feature for the present discussion
relates to the very large gap between neutron sd and

10In 20Ne, one has EBMBPT = 152.6MeV, EIM-NCSM =
162.6MeV and EPGCM � EHFB = 7.4MeV, knowing that
EEXP = 160.6MeV. It must be noted that, just as BMBPT,
CCSDT-1 calculations relying on a purely ”vertical” expansion
on top of a deformed mean-field state also provides slightly
underbound Ne isotopes with the �NNLOGO(394) Hamilto-
nian [53] and thus require the addition of 3-5 MeVs of static
correlations associated with symmetry restoration and shape
fluctuations.
11Baranger’s single-particle energies embody the genuine one-
body shell structure that can be extracted from any many-
body calculation [60,61], i.e. their definition is not associated
with a mean-field approximation as the HF single-particle
energies are for example.
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Fig. 11: (Color online) Theoretical (HFB, PGCM,
BMBPT, IM-NCSM) and experimental ground-state
rms charge radius along the Neon isotopic chain. HFB
and BMBPT results correspond to the HFB minimum
in the axial (�2,�3) plane. PGCM calculations are per-
formed over the axial (�2,�3) plane. The N3LO �EFT
Hamiltonian with �srg = 1.88 fm�1 is employed in
PGCM and IM-NCSM calculations. BMBPT calcula-
tions are performed with emax = 10.

Except in 18�22Ne where octupole fluctuations are im-
portant and in 24Ne, radii associated with the HFB min-
imum in the axial (�2,�3) plane roughly follow the trend
of IM-NCSM predictions but are about 0.1 fm larger.
From a phenomenological standpoint, it seems consistent
that the deficit of binding at the HFB level correlates
with too large radii. However, this correlation is not
e↵ective when adding static correlations via PGCM. In-
deed, while increasing the binding energy by few MeVs
and leaving S2n essentially untouched, PGCM system-
atically increases rms charge radii compared to HFB by
mixing in more deformed configurations than the HFB
minimum (see Figs. 2 and 4). Eventually, PGCM results
overestimate experiment (IM-NCSM) by about 0.1 fm
(0.3 fm) all throughout the isotopic chain even though
the isotopic dependence is closer to IM-NCSM than
HFB. Thus, static collective correlations make PGCM
largely exaggerate rms charge radii and must be com-
pensated for by missing dynamical correlations. Given
that dynamical correlations directly brought on top of
the deformed mean-field increase charge radii [62], it
will be of interest to see how and why they decrease
charge radii when brought on top of the PGCM state
via PGCM-PT.

Fig. 12: (Color online) Low-lying spectroscopy in
18�32Ne. First �E2

+

1
and �E4

+

1
excitation energies (up-

per panel) and their ratio �E4
+

1
/�E2

+

1
(lower panel).

PGCM results with model-space (black box) plus �EFT
(pink band) uncertainties and IM-NCSM results with
total many-body (black box) plus �EFT (pink band)
uncertainties are compared to experimental data. The
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1 is em-
ployed in PGCM and IM-NCSM calculations.

3.3.4 Low-lying spectroscopy

Figure 12 displays the systematic of the first 2+ and 4+

excitation energies in 18�32Ne. Except for the rotational
character of the ground-state band in 30Ne, experimen-
tal data are well reproduced by IM-NSCM calculations
all along the isotopic chain. As for PGCM calculations,
the excellent results obtained in 20Ne do extend to 22Ne.
Starting with 24Ne, the trend of PGCM results is how-
ever at odds with IM-NCSM and experimental values.
In particular, the steep decrease of the first 2+ (4+)
energy beyond 26Ne (24Ne), well captured by IM-NCSM
calculations, is absent from the PGCM results. Further-
more, the experimental �E4

+

1
/�E2

+

1
ratio displayed in

the lower panel of Fig. 12 demonstrates that the nature
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Fig. 9: (Color online) Absolute ground-state ener-
gies (upper panel) and two-neutron separation ener-
gies (lower panel) along the Ne isotopic chain. Re-
sults from HFB, PGCM, BMBPT and IM-NCSM cal-
culations are compared to experimental data. The
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1 is
employed in HFB/PGCM/BMBPT/IM-NCSM calcula-
tions. BMBPT calculations are performed with emax =
10.

that is obviously due to missing dynamical correlations.
While the goal is to bring in these correlations within a
symmetry-conserving scheme, i.e. on top of the PGCM
unperturbed state via PGCM-PT [1], their e↵ect can
already be appreciated through the results of single-
reference Bogoliubov many-body perturbation theory
(BMBPT) [54,55,56,57,58] calculations performed on
top of a deformed HFB reference state9 that are dis-
played in Fig. 9. The bulk of correlations is indeed recov-
ered at the BMBPT(3) level, and we note that the gain
in energy increases with neutron number and therefore
corrects the overall trend at the same time. BMBPT(3)
energies are still about 7�15MeV away from IM-NCSM
and experimental values, which is similar in magnitude
to the static correlations gained via symmetry restora-

9First results of this kind were presented in Ref. [15].

tions and shape fluctuations within the PGCM10. Thus
the consistent “sum” of static and dynamical correla-
tions accessible via PGCM-PT can be expected to bring
the absolute values very close to IM-NCSM results; see
Paper III for a related discussion.

The lower panel of Fig. 9 displays two-neutron sepa-
ration energies S2n to appreciate the stability of Ne
isotopes against two-neutron emission. The IM-NCSM
results reproduce experimental data well within uncer-
tainties, with the exception of 30Ne, which shows the
aforementioned anomaly leading to a slightly negative
central value with a sizable error bar that almost over-
laps with experiment. Consistently with the too flat
curve in the upper panel, PGCM S2n are too low across
the chain such that the drip-line is wrongly predicted
to be located at 30Ne instead of 34Ne [59]. While static
collective correlations captured through PGCM have no
impact on the S2n, the comparison with IM-NCSM (or
CCSDT-1) results underlines the importance of dynam-
ical correlations to reproduce the evolution of binding
energies with neutron number. As a matter of fact, dy-
namical correlations brought in at the BMBPT(3) level
correct for the wrong trend of HFB binding energies
such that the S2ns become perfectly consistent with
IM-NCSM results and experimental data. Once again,
there is no obvious reason to believe that consistently
correcting PGCM results for dynamical correlations will
not bring the same benefit.

To further put the binding energy evolution in per-
spective within our theoretical scheme, Fig. 10 displays
the evolution of neutron and proton (non-observable)
Baranger’s spherical shell structure [60,61] along the
Neon chain for both spherical HFB and PGCM 0+

ground states11. The last occupied orbit associated with
a naive filling of the shells is indicated with a black dot
for each isotope. One first observes that static corre-
lations do tend to compress the spectrum around the
Fermi energy but without changing it qualitatively here.
The most important feature for the present discussion
relates to the very large gap between neutron sd and

10In 20Ne, one has EBMBPT = 152.6MeV, EIM-NCSM =
162.6MeV and EPGCM � EHFB = 7.4MeV, knowing that
EEXP = 160.6MeV. It must be noted that, just as BMBPT,
CCSDT-1 calculations relying on a purely ”vertical” expansion
on top of a deformed mean-field state also provides slightly
underbound Ne isotopes with the �NNLOGO(394) Hamilto-
nian [53] and thus require the addition of 3-5 MeVs of static
correlations associated with symmetry restoration and shape
fluctuations.
11Baranger’s single-particle energies embody the genuine one-
body shell structure that can be extracted from any many-
body calculation [60,61], i.e. their definition is not associated
with a mean-field approximation as the HF single-particle
energies are for example.
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Fig. 17: (Color online) Theoretical (PGCM, IM-NCSM)
and experimental electromagnetic moments along the
Neon isotopic chain. Upper panel: reduced electric
quadrupole transition B(E2 : 2+

1
! 0+

1
) to which is

added the PGCM B(E2 : 2+
2
! 0+

2
) value in 30Ne. Mid-

dle panel: spectroscopic electric quadrupole moment of
the first 2+ state. Lower panel: spectroscopic magnetic
dipole moment of the first 2+ and 4+ states. PGCM
calculations are performed in the axial (�2,�3) plane.
The N3LO �EFT Hamiltonian with �srg = 1.88 fm�1 is
employed in PGCM and IM-NCSM calculations.
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The solutions {f̆ �̃
µ
(q); q 2 set} play the role of orthonor-

mal collective wave functions as a function of q that can
be interpreted as probability amplitudes. Left-multiplying
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energy in terms of contributions associated with each

deformation q

E
�̃

µ
=

X

q

h̆�̃⇤
µ
(q) f̆ �̃

µ
(q) ⌘

X

q

e(0+1)

0
(q) , (9)

with

h̆�̃

µ
(q) ⌘

X

p

H̆ �̃

q0p0
f̆ �̃

µ
(p) . (10)

Note that, as done in Paper I, a similar decomposition of
the PGCM energy can be achieved prior to diagonalizing
the norm kernel.

B Memory optimization

The storage of the interaction matrix elements necessary
to perform ab initio calculations in large computational
bases is challenging. Several methods exist to reduce
this memory burden. For example, one most commonly
takes advantage of the rotational symmetry to store
matrix elements in J-coupled form. However, this stor-
age is not well adapted to PGCM calculations based on
symmetry breaking HFB states where the contraction
of the interaction with rotated density matrices need
to be performed in m-scheme. In the present Appendix,
the workflow to calculate a Hamiltonian kernel while
optimizing memory and runtime is detailed.

B.1 J-coupling scheme

In the present calculations, the one-body Hilbert space
is spanned by spherical harmonic oscillator eigenstates
that are labelled by 5 quantum numbers

k ⌘ (nk, lk, jk,mk, tk) , (11)

where nk denotes the radial quantum number, lk the
orbital angular momentum, jk the total angular mo-
mentum, mk its projection and tk the isospin projec-
tion.

Introducing the reduced index

k̃ ⌘ (nk, lk, jk, tk) , (12)

and building the m-scheme, i.e. tensor-product, basis of
the two-body Hilbert space according to

|k1k2i ⌘ |k1i ⌦ |k2i , (13)

the J-coupled two-body basis is obtained through

|k̃1k̃2JMi ⌘
1

1 + �
k̃1k̃2

X

m1m2

CJM

jk1mk1 jk2mk2
|k1k2i , (14)
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Fig. 11: (Color online) Theoretical (HFB, PGCM,
BMBPT, IM-NCSM) and experimental ground-state
rms charge radius along the Neon isotopic chain. HFB
and BMBPT results correspond to the HFB minimum
in the axial (�2,�3) plane. PGCM calculations are per-
formed over the axial (�2,�3) plane. The N3LO �EFT
Hamiltonian with �srg = 1.88 fm�1 is employed in
PGCM and IM-NCSM calculations. BMBPT calcula-
tions are performed with emax = 10.

Except in 18�22Ne where octupole fluctuations are im-
portant and in 24Ne, radii associated with the HFB min-
imum in the axial (�2,�3) plane roughly follow the trend
of IM-NCSM predictions but are about 0.1 fm larger.
From a phenomenological standpoint, it seems consistent
that the deficit of binding at the HFB level correlates
with too large radii. However, this correlation is not
e↵ective when adding static correlations via PGCM. In-
deed, while increasing the binding energy by few MeVs
and leaving S2n essentially untouched, PGCM system-
atically increases rms charge radii compared to HFB by
mixing in more deformed configurations than the HFB
minimum (see Figs. 2 and 4). Eventually, PGCM results
overestimate experiment (IM-NCSM) by about 0.1 fm
(0.3 fm) all throughout the isotopic chain even though
the isotopic dependence is closer to IM-NCSM than
HFB. Thus, static collective correlations make PGCM
largely exaggerate rms charge radii and must be com-
pensated for by missing dynamical correlations. Given
that dynamical correlations directly brought on top of
the deformed mean-field increase charge radii [62], it
will be of interest to see how and why they decrease
charge radii when brought on top of the PGCM state
via PGCM-PT.

Fig. 12: (Color online) Low-lying spectroscopy in
18�32Ne. First �E2

+

1
and �E4

+

1
excitation energies (up-

per panel) and their ratio �E4
+

1
/�E2

+

1
(lower panel).

PGCM results with model-space (black box) plus �EFT
(pink band) uncertainties and IM-NCSM results with
total many-body (black box) plus �EFT (pink band)
uncertainties are compared to experimental data. The
N3LO �EFT Hamiltonian with �srg = 1.88 fm�1 is em-
ployed in PGCM and IM-NCSM calculations.

3.3.4 Low-lying spectroscopy

Figure 12 displays the systematic of the first 2+ and 4+

excitation energies in 18�32Ne. Except for the rotational
character of the ground-state band in 30Ne, experimen-
tal data are well reproduced by IM-NSCM calculations
all along the isotopic chain. As for PGCM calculations,
the excellent results obtained in 20Ne do extend to 22Ne.
Starting with 24Ne, the trend of PGCM results is how-
ever at odds with IM-NCSM and experimental values.
In particular, the steep decrease of the first 2+ (4+)
energy beyond 26Ne (24Ne), well captured by IM-NCSM
calculations, is absent from the PGCM results. Further-
more, the experimental �E4

+

1
/�E2

+

1
ratio displayed in

the lower panel of Fig. 12 demonstrates that the nature
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○ Projection brings 5 MeV binding
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Fig. 9: Absolute energies of the first 0+, 2+ and 4+

states in 20Ne computed via PGCM, PGCM-PT(2) and
FCI.

PGCM-PT(2) favor configurations17 to the left of the
HFB minimum (�2 = [0.25, 0.30]). As a result, dynami-
cal correlations could counterbalance the overestimated
radii obtained at the PGCM level (see Paper II) due
to the opposite predilection of the latter for deforma-
tions larger than the HFB minimum. This interesting
and non-trivial finding will have to be confirmed by an
explicit calculation of rms radii at the PGCM-PT(2)
level in the future.

In addition to providing accurate absolute energies in
complex systems, e.g. in doubly open-shell nuclei dis-
playing strong collective static correlations, a key ad-
vantage of the multi-reference PGCM-PT formalism
over BMBPT is that it provides natural access to the
low-lying spectroscopy within a symmetry-conserving
scheme by correcting each PGCM eigenstate for dynam-
ical correlations.

The first 2+ and 4+ excitation energies in 20Ne are
shown in Fig. 8 as a function of the axial quadrupole
deformation. First, one observes that the PGCM 2+1
and 4+1 excitation energies di↵er from the FCI results

17Once again, single excitations bring negligible contributions
to the correlation energy.

by 300 keV (27%) and 560 keV (13%), respectively. This
is consistent with the results displayed in Paper II. One
also sees that PHFB results at the canonical deformation
(�2 = 0.3) are very close to PGCM ones, but the di↵er-
ences grow for smaller or large deformations. Adding
dynamical correlations, PHFB-PT(2) flattens the exci-
tation energies as a function of �2 compared to PHFB,
systematically going into the direction of PGCM-PT(2)
for each deformation. Given that exact results would be
independent of the deformation of the underlying vac-
uum, this feature is an empirical sign that PHFB-PT(2)
results are better converged than PHFB ones. It also
implies that the PGCM-PT(2) spectrum converges with
fewer states than the PGCM one. Still, at the canoni-
cal deformation (�2 = 0.3) dynamical correlations are
small, which remains true even when shape mixing is
added, given that PGCM-PT(2) excitation energies are
essentially identical to PGCM ones.

Overall, the PGCM-PT(2) 2+1 and 4+1 excitation ener-
gies di↵er by 24% and 15% from FCI results respectively,
which seems to indicate that missing correlations are
beyond two-particle/two-hole excitations of axially de-
formed HF states. While going to PGCM-PT(3) will
help reduce this di↵erence, it might be numerically less
costly and more relevant in this case to enrich the PGCM
unperturbed state via, e.g., the inclusion of octupole,
triaxial and/or pairing degrees of freedom, or to start
from HFB states obtained via a variation after particle-
number-projection (VAPNP) calculation, in order to
compress the spectrum. In the future, another possibility
would be to design a non-perturbative extension of the
multi-reference PGCM-PT formalism to more e�ciently
capture higher-rank particle-hole excitations.

Our 20Ne results are summarized in Fig. 9 where the
combined benefits of PGCM-PT are clearly apparent.
Although a slight overbinding of about 3MeV (⇠ 1.5%)
is observed, PGCM-PT(2) brings down absolute energies
to the right range of values without degrading their
relative position. This latter feature is far from trivial
given that the PGCM-PT formalism is state specific,
i.e. calculations are performed separately on top of each
PGCM eigenstate, and considering that each PGCM
energy is corrected by about 25MeV while their relative
distance is on the MeV scale. In particular, the (non-
trivial) numerical techniques used to solve the PGCM-
PT(2) equations must be well controlled to maintain the
consistency of the spectra. For example, it is essential
to use the same complex shift � for all states belonging
to a given nucleus in order for the bias on absolute
energies to be consistent and to largely cancel out in
the excitation spectrum.
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Fig. 12: (Color online) J⇡ = 0+, 2+, 4+ PHFB TECs
in 20Ne as a function of the axial quadrupole deforma-
tion �2 for s = 0MeV�1 (upper panel), s = 10MeV�1

(middle panel) and s = 20MeV�1 (lower panel).

Fig. 13: (Color online) Absolute PGCM and PGCM-
PT(2) binding energies of 20Ne as a function of the
MR-IMSRG flow parameter s.

Schrödinger’s equation at the PGCM-PT(2) level. Under
the hypothesis that the PGCM-PT is convergent and
given that the second-order correction reduces to 2MeV
at s = 20MeV�1, one can speculate that the PGCM-
PT(2) energy is eventually better converged than the
5MeV spread over the interval s 2 [0, 20]MeV�1, i.e.
by better than 3%.

Turning to the low-lying spectroscopy, Fig. 14 displays
the first 2+ and 4+ excitation energies as a function of
�2 for the three values of the flow parameter. Focusing
first on s = 0, the conclusions drawn in Sec. 2.1.3 remain
valid, i.e. PHFB-PT(2) flattens the excitation energies
as a function of �2 compared to PHFB whereas dynami-
cal correlations brought in through PGCM-PT(2) do not
modify the low-lying part of the PGCM ground-state ro-
tational band. However, the picture changes drastically
when pre-processing the Hamiltonian via MR-IMSRG.
Indeed, the PGCM spectrum becomes more dilated with
increasing s. This can be understood from the TECs
in Fig. 12 where the decrease with s of the minimum
deformation spreads out the PHFB rotational spectrum
whereas the increased sti↵ness further pushes up the
excitation energies via the coupling to shape fluctua-
tions within the GCM. Based on this trend, one observes
that PHFB-PT(2), while always flattening the depen-
dence on �2, systematically corrects for this dilatation

PGCM-PT(2) validation

○ Compare to exact Full CI reference [R. Roth]

○ PGCM-PT(2) brings in dyn. correlations



Combining PGCM-PT(2) with MR-IMSGR

○ Decouples             from Q space as s ➝  ∞                    ➝  Dynamical correlations recast into H(s)
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where the latter equality makes use of the one-body
eigenbasis of F[|�(q)i] and where

E(0)(q) ⌘
AX

i=1

ei(q) . (47)

While the definition of E(0)(q) above is at variance with
the choice made in App. C.8.2 for Møller-Plesset MBPT,
it only shifts H0(q) by a constant such that both expan-
sions match from the first order on. Details of the corre-
sponding expansion are discussed in App. C.8.2.

3.2.5 U(1)-breaking single-reference limit

In the more general case, the set Bq✓ reduces to a
particle-number breaking Bogoliubov state |�(q)i in
the single-reference limit. Formally, Eqs. (44)-(45) still
hold and H0 does not match the unperturbed opera-
tor at play in single-reference Bogoliubov many-body
perturbation theory (BMBPT) [25,46,19,20,47] (see
App. C.8.1).

However, and contrary to Sec. 3.2.4, |�(q)i cannot be
an eigenstate of the U(1)-conserving one-body operator
F such that even in the unconstrained case, i.e. when-
ever �q = 0, the SR reduction of PGCM-PT does not
match Møller-Plesset BMBPT. Correspondingly, and
even though |�(q)i is an eigenstate of H0 by construc-
tion, the eigenstates in Q space di↵er from the elemen-
tary quasi-particle excitations of |�(q)i (Eq. (116)) and
cannot be directly accessed. As a result, the pertur-
bative expansion is less straightforward to implement
than in standard BMBPT where H0 is a generalized,
i.e. particle-number-non-conserving, one-body operator
whose eigenstates are nothing but |�(q)i and its elemen-
tary quasi-particle excitations (see App. C.8.1).

It is of interest to see to what extent the partitionings
at play in (B)MBPT on the one hand and in the SR
reduction of PGCM-PT on the other hand do influence
numerical results. This comparison is performed in Paper
III.

3.3 Application to second order

Now that the unperturbed reference state and the associ-
ated partitioning have been introduced, the perturbative
expansion built according to the formal perturbation
theory recalled in Sec. 2 is specified up to second order,
thus defining the PGCM-PT(2) approximation.

3.3.1 Zeroth and first-order energies

Given the unperturbed state |⇥(0)
i ⌘ |⇥�̃0

µ
i delivered

by Eqs. (27) and (32), the zeroth-order energy is given
by Eq. (37) whereas the first-order energy is obtained
through

Eref = E(0) + E(1)

= h⇥(0)
|H|⇥(0)

i

=
X

pq

f⇤(p)H �̃

p0q0 f(q). (48)

3.3.2 First-order interacting space

According to Eq. (16b), the second-order energy E(2) re-
quires the knowledge of the first-order wave-function. Ac-
cessing |⇥(1)

i is rendered non-trivial by the fact that Q-
space eigenstates of H0 are not known a priori. This dif-
ficulty leads to the necessity to solve Eq. (22) 23.

However, solving Eq. (22) requires the identification of
a suitable basis of Q space, i.e. the appropriate first-

order interacting space over which |⇥(1)
i can be exactly

expanded. In standard single-reference24 perturbation
theories, the first-order wave function is a linear combina-
tion of single and double excitations of the unperturbed
state, i.e. the first-order interacting space is well par-
titioned. In the present case, the PGCM unperturbed
state prevents a straightforward identification of the
first-order interacting space in terms of elementary ex-
citations of a preferred reference vacuum. Indeed, each
excitation of a Bogoliubov product state entering |⇥(0)

i

can have a non-zero overlap with any of the other HFB
vacua making up |⇥(0)

i, and thus with |⇥(0)
i itself. Even-

tually, this means that (i) Q cannot be built explicitly
and that (ii) Eq. (22) cannot be solved exactly. While the
first di�culty can be bypassed by using Eq. (9b) repeat-
edly, the second one requires a procedure to optimally
approximate the first-order interacting space.

Rather than referring to the orthonormal representation
of HA associated with a preferred reference vacuum
and its elementary excitations, one can appropriately
consider the multiple representations built out of each
product state entering |⇥(0)

i, i.e. each Bogoliubov state

23The more elaborate Eq. (21) needs to be solved to access
|⇥(k)

i with k > 1.
24Standard MR perturbation theories rely on an unperturbed
state mixing orthogonal elementary excitations of a common
vacuum state restricted to a certain valence/active space. In
such a situation, the first-order interacting space is also well
partitioned [12] as it is built out of single and double excita-
tions25 outside the valence/active space from each orthogonal
product state entering the unperturbed state wave function.

○ PGCM+MR-IMSRG recently explored by Yao et al.  ➝  Promising results; impact of PT?

➝  PT(2) correction systematically decreases
➝  Problem becomes more perturbative ➝  PT(2) corrects for dilatation of spectrum

➝  Triaxial GCM not enough
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Fig. 12: (Color online) J⇡ = 0+, 2+, 4+ PHFB TECs
in 20Ne as a function of the axial quadrupole deforma-
tion �2 for s = 0MeV�1 (upper panel), s = 10MeV�1

(middle panel) and s = 20MeV�1 (lower panel).

Fig. 13: (Color online) Absolute PGCM and PGCM-
PT(2) binding energies of 20Ne as a function of the
MR-IMSRG flow parameter s.

Schrödinger’s equation at the PGCM-PT(2) level. Under
the hypothesis that the PGCM-PT is convergent and
given that the second-order correction reduces to 2MeV
at s = 20MeV�1, one can speculate that the PGCM-
PT(2) energy is eventually better converged than the
5MeV spread over the interval s 2 [0, 20]MeV�1, i.e.
by better than 3%.

Turning to the low-lying spectroscopy, Fig. 14 displays
the first 2+ and 4+ excitation energies as a function of
�2 for the three values of the flow parameter. Focusing
first on s = 0, the conclusions drawn in Sec. 2.1.3 remain
valid, i.e. PHFB-PT(2) flattens the excitation energies
as a function of �2 compared to PHFB whereas dynami-
cal correlations brought in through PGCM-PT(2) do not
modify the low-lying part of the PGCM ground-state ro-
tational band. However, the picture changes drastically
when pre-processing the Hamiltonian via MR-IMSRG.
Indeed, the PGCM spectrum becomes more dilated with
increasing s. This can be understood from the TECs
in Fig. 12 where the decrease with s of the minimum
deformation spreads out the PHFB rotational spectrum
whereas the increased sti↵ness further pushes up the
excitation energies via the coupling to shape fluctua-
tions within the GCM. Based on this trend, one observes
that PHFB-PT(2), while always flattening the depen-
dence on �2, systematically corrects for this dilatation
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Fig. 15: (Color online) Low lying spectrum of 20Ne as a
function of the MR-IMSRG flow parameter.

this latter point remains to be studied22. Given that
PGCM-PT(2) is numerically more costly than the MR-
IMSRG(2) step (see App. D.1), the optimal combination
of both methods is of great interest. Of course, this
optimal point must be such that the error due to the
breaking of unitarity through the MR-IMSRG(2) pre-
processing is not larger than the error associated with
PGCM-PT(2) results.

4 Conclusions

This work, the third paper of the series on PGCM-
PT, presented the first realistic results for the novel
multi-reference perturbation theory built on top of an
unperturbed state generated through the projected gen-
erator coordinate method. While the unperturbed state
captures crucial static correlations via the breaking and
restoration of symmetries along with collective fluctu-
ations, the perturbative expansion brings in comple-
mentary dynamical correlations in a consistent fashion

22See Ref. [24] for an accelerated convergence in so-called
in-medium no-core shell model calculations.

Fig. 16: (Color online) Total ground-state energy of 20Ne
computed within various many-body methods for three
di↵erent values of the MR-IMSRG flow parameter. Num-
bers next to downward arrows denote the corresponding
gain in correlation energy (in MeV).

within a symmetry conserving scheme. Furthermore,
being a state-specific multi-reference many-body pertur-
bation theory, PGCM-PT accesses ground and low-lying
excited states on an equal footing.

First, the novel many-body formalism was shown to be
both versatile and accurate by benchmarking proof-of-
principle results for the doubly closed-shell 16O, singly
open-shell 18O and doubly open-shell 20Ne nuclei in
a small (emax = 4) harmonic oscillator model space
against full configuration interaction results. Binding
energies obtained at second order, i.e. through PGCM-
PT(2), were shown to be typically 0.5�1.5% away from
FCI results.

The second focus of the present paper was to demon-
strate the benefit of combining low-order PGCM-PT
with a pre-processing of the Hamiltonian via multi-
reference in-medium similarity renormalization group
transformations. The rather low cost of MR-IMSRG(2)
calculations makes it possible to e�ciently capture the
bulk of dynamical correlations in large model spaces
(cf. Refs. [24,25,26]). Based on such a pre-processed
Hamiltonian, PGCM-PT(2) can bring in crucial static
correlations and any remaining dynamical correlations

⦿ Multi-reference IMSRG: nucleus-dependent transformation of H
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where H̄1 ⌘ H1 � E(1). The total energy of the unper-
turbed state is defined as

Eref ⌘ h⇥(0)
|H|⇥(0)

i = E(0) + E(1) . (17)

H0 = E(0)
|�(0)

ih�(0)
|+

S,D,...X

I

EI
|�I

ih�I
|

E(2) = �

S,DX

I

��h�(0)
|H1|�I

i
��2

EI � E(0)

H(s) = U †(s)HU(s) ,

2.3 Computable expression

Working algebraic expressions of |⇥(k)
i and E(k) are

easily obtained in case X is invertible, i.e. if the eigen-
states of H0 in Q space are known, which is not the
case in the present work. Under closer inspection, one
actually needs matrix elements of

A ⌘ �X�1
QH̄1 , (18)

noting in passing that QH̄1|⇥(0)
i = QH1|⇥(0)

i. Since
by definition

Q

⇣
H0 � E(0)

⌘
QA = �QH̄1 , (19)

the matrix A of A is the solution of the system of linear
equations

MA = �H̄1 , (20)

where M ⌘ H0�E(0)1 and where the left matrix index
necessarily belongs to Q space whereas the right index
is either in Q or P space. In expanded form, the linear
system reads, with i 6= 0,
X

k 6=0

MikAkj = �
�
H̄1

�
ij

, (21)

where the sum is restricted to Q-space states. In case
one is only interested in X�1

QH̄1|⇥(0)
i, a simpler linear

system involving the vectors a and h1 made out of the
first column Ak0 and (H1)k0 of A and H1, respectively,
needs to be solved, i.e.

Ma = �h1 . (22)

As discussed in Paper III, a sparse matrix representation
of M makes the iterative solution of the linear equation
system accessible under certain hypothesis for realistic
ab initio nuclear structure calculations.

Given A, the energy corrections can eventually be com-
puted as

E(2) = h⇥(0)
|H1A|⇥(0)

i = h†
1a , (23a)

E(3) = h⇥(0)
|H1A

2
|⇥(0)

i = h†
1Aa = a†H̄1a , (23b)

...

knowing that E(1) = (H1)00.

2.4 Hylleraas functional

Formal perturbation theory can be alternatively derived
through a variational method due to Hylleraas [?,?]. Let
us consider a variational ansatz

|⌅i ⌘ |⇥(0)
i+

1X

k=1

|⌅(k)
i , (24)

where h⇥(0)
|⌅(k)

i = 0 8k � 1 and where the variational
component |⌅(k)

i is proportional to Hk

1 . Computing the
expectation of H in |⌅i and sorting the various orders
in H1, Ritz’ variational principle leads to

E E(0) + E(1)

+
h
h⌅(1)

|QH1|⇥
(0)

i+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i

i
+O(H3

1 ) , (25)

For E to be a minimum of the right-hand side expression
for an arbitrary H1, each term associated with a given
power of H1 must be either minimal or constant in order
to indeed reach E. The sum of the corresponding terms
delivers the individual perturbative components E(k) in
Eq. (10b) given the uniqueness of the series in powers
of H1.

Noting that E(0) and E(1) are free from any variational
components, the variational approach starts with the
second-order energy correction E(2) that is the minimum
of the so-called Hylleraas functional

L[⌅(1)] ⌘ h⌅(1)
|QH1|⇥

(0)
i

+ h⇥(0)
|H1Q|⌅(1)

i

+ h⌅(1)
|Q(H0 � E(0))Q|⌅(1)

i . (26)

It is straightforward to realize that the saddle-point
of Eq. (26) is obtained for |⌅(1)

i = |⇥(1)
i solution of

Eq. (15b).

This alternative derivation is of interest because it un-
derlines the fact that the use of an approximate ansatz
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Towards the ab initio description of complex nuclei

⦿ Three complementary levers to tackle complex mid-mass/heavy nuclei via expansion methods

1. Pre-processing of the Hamiltonian 

2. Choice of reference state

➝  Rich enough to capture non-perturbative static correlations, but low dimensionality

➝  Flow must resum bulk of dynamical correlations without inducing a large break of unitarity

3. Systematic expansion of the many-body Schrödinger equation

➝  Low-order truncation with gentle scaling
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Fig. 6: (color online) Same as Fig. 3 except that the
PGCM-PT(2) calculation is performed for three values
(s = 0, 10, 20MeV�1) of the MR-IMSRG pre-processing
parameter of the Hamiltonian.

4.2 Numerical results

The PGCM-PT(2) calculation of 20Ne is repeated for
two MR-IMSRG(2) pre-processed Hamiltonians char-
acterized by the flow parameters s = 10, 20MeV�1 in
addition to the unprocessed one (s = 0) discussed ear-
lier.

The systematic e↵ect of the MR-IMSRG pre-processing
of the Hamiltonian on the absolute binding energy of
20Ne is shown in Fig. 6. The MR-IMSRG evolution
largely reshu✏es the hierarchy of correlations at play.
As s grows, one observes that16

1. static correlations captured at the PGCM level are
stable throughout the process, only slightly increas-
ing from about 16MeV at s = 0MeV�1 to about
19MeV at s = 20MeV�1, remaining overall consis-
tent with the static correlations (10MeV) captured
within the EDF calculation,

16The total energy is lowered by about 5MeV (3%) from
s = 0MeV�1 to s = 20MeV�1, i.e. it is not strictly invariant
for reasons mentioned above. The problem becoming more
perturbative with s and the PGCM-PT(2) correction being
reduced to 2MeV at s = 20MeV�1, missing higher-order
corrections are expected to be about few hundreds keV at
that point. From the latter estimate and the variation of the
total energy over the interval s 2 [0, 20]MeV�1, the converged
value can be estimated to lie within that 5MeV (3%) band.

Fig. 7: (color online) Same as Fig. 4 except that the
PGCM-PT(2) calculation is performed for three values
(s = 0, 10, 20MeV�1) of the MR-IMSRG pre-processing
parameter of the Hamiltonian.

2. dynamical correlations grasped on top of PGCM
through the PGCM-PT(2) correction are drastically
reduced from being highly dominant (42MeV) at
s = 0MeV�1 to being largely subleading (2MeV) at
s = 20MeV�1.

The picture that emerges is that, by resumming 95% of
the initial dynamical correlations into the pre-processed
Hamiltonian H̄(s)17, the scales and hierarchy of cor-
relations become highly consistent with those at play
in the EDF calculation. Thus, the apparent inconsis-
tency between the results obtained from both theoretical
schemes in Sec. 3 is lifted such that a quantitative and
explicit link between them seems now at reach.

The e↵ect of the MR-IMSRG pre-processing on 20Ne
ground-state rotational band is displayed in Fig. 7.
As already seen in Fig. 4, the ab initio PGCM spec-
trum is essentially perfect at s = 0MeV�1 and the
corresponding PGCM-PT(2) correction essentially zero.
However, the picture changes significantly when pre-

17The novel PGCM-PT formalism is instrumental to moni-
tor the extent by which the MR-IMRG pre-processing can
e↵ectively reduce the need to resum dynamical correlations
explicitly on top of the PGCM step, i.e., the extent by which
the PGCM state is eventually decoupled from the rest of the
Hilbert space as s ! 1.
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Fig. 12: (Color online) J⇡ = 0+, 2+, 4+ PHFB TECs
in 20Ne as a function of the axial quadrupole deforma-
tion �2 for s = 0MeV�1 (upper panel), s = 10MeV�1

(middle panel) and s = 20MeV�1 (lower panel).

Fig. 13: (Color online) Absolute PGCM and PGCM-
PT(2) binding energies of 20Ne as a function of the
MR-IMSRG flow parameter s.

Schrödinger’s equation at the PGCM-PT(2) level. Under
the hypothesis that the PGCM-PT is convergent and
given that the second-order correction reduces to 2MeV
at s = 20MeV�1, one can speculate that the PGCM-
PT(2) energy is eventually better converged than the
5MeV spread over the interval s 2 [0, 20]MeV�1, i.e.
by better than 3%.

Turning to the low-lying spectroscopy, Fig. 14 displays
the first 2+ and 4+ excitation energies as a function of
�2 for the three values of the flow parameter. Focusing
first on s = 0, the conclusions drawn in Sec. 2.1.3 remain
valid, i.e. PHFB-PT(2) flattens the excitation energies
as a function of �2 compared to PHFB whereas dynami-
cal correlations brought in through PGCM-PT(2) do not
modify the low-lying part of the PGCM ground-state ro-
tational band. However, the picture changes drastically
when pre-processing the Hamiltonian via MR-IMSRG.
Indeed, the PGCM spectrum becomes more dilated with
increasing s. This can be understood from the TECs
in Fig. 12 where the decrease with s of the minimum
deformation spreads out the PHFB rotational spectrum
whereas the increased sti↵ness further pushes up the
excitation energies via the coupling to shape fluctua-
tions within the GCM. Based on this trend, one observes
that PHFB-PT(2), while always flattening the depen-
dence on �2, systematically corrects for this dilatation

⦿ Novel multi-reference perturbation theory

○ PGCM accounts for collective/IR correlations

○ UV physics provided by well-defined non-orthogonal PT

○ Can be combined with pre-processing of H

Optimal balance between the three must be found
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ing from about 16MeV at s = 0MeV�1 to about
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tent with the static correlations (10MeV) captured
within the EDF calculation,

16The total energy is lowered by about 5MeV (3%) from
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reduced to 2MeV at s = 20MeV�1, missing higher-order
corrections are expected to be about few hundreds keV at
that point. From the latter estimate and the variation of the
total energy over the interval s 2 [0, 20]MeV�1, the converged
value can be estimated to lie within that 5MeV (3%) band.

Fig. 7: (color online) Same as Fig. 4 except that the
PGCM-PT(2) calculation is performed for three values
(s = 0, 10, 20MeV�1) of the MR-IMSRG pre-processing
parameter of the Hamiltonian.

2. dynamical correlations grasped on top of PGCM
through the PGCM-PT(2) correction are drastically
reduced from being highly dominant (42MeV) at
s = 0MeV�1 to being largely subleading (2MeV) at
s = 20MeV�1.

The picture that emerges is that, by resumming 95% of
the initial dynamical correlations into the pre-processed
Hamiltonian H̄(s)17, the scales and hierarchy of cor-
relations become highly consistent with those at play
in the EDF calculation. Thus, the apparent inconsis-
tency between the results obtained from both theoretical
schemes in Sec. 3 is lifted such that a quantitative and
explicit link between them seems now at reach.

The e↵ect of the MR-IMSRG pre-processing on 20Ne
ground-state rotational band is displayed in Fig. 7.
As already seen in Fig. 4, the ab initio PGCM spec-
trum is essentially perfect at s = 0MeV�1 and the
corresponding PGCM-PT(2) correction essentially zero.
However, the picture changes significantly when pre-

17The novel PGCM-PT formalism is instrumental to moni-
tor the extent by which the MR-IMRG pre-processing can
e↵ectively reduce the need to resum dynamical correlations
explicitly on top of the PGCM step, i.e., the extent by which
the PGCM state is eventually decoupled from the rest of the
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