Basis-set correction method Application to a molecular property the dipole moment

Diata Traore Julien Toulouse Emmanuel Giner

Laboratoire de chimie théorique - Sorbonne Université & CNRS

January 12, 2022

General introduction about quantum chemistry

Quantum chemistry :

provides methods to solve the many-body Schrödinger equation

The many-body Schrödinger equation

$$\hat{H}\Psi(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)=E\Psi(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)$$

where

$$\hat{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|} + \sum_{i} v(\vec{r}_{i})$$

General introduction about quantum chemistry

Quantum chemistry :

provides methods to solve the many-body Schrödinger equation

The many-body Schrödinger equation

$$\hat{H}\Psi(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)=E\Psi(\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N)$$

where

$$\hat{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|} + \sum_{i} v(\vec{r}_{i})$$

Main approaches :

- Wave-function theory (Hartree-Fock, Configuration Interaction, CCSD(T), Perturbation Theory, ...)
- Density functional theory (LDA, GGA, Meta-GGA, ...)
- Hybrid methods (example : basis-set correction)

Wave-function theory - slow convergence of molecular properties

System : Boron monohydride (BH)

Wave-function theory - slow convergence of molecular properties

System : Boron monohydride (BH)

Observations :

Slow convergence with basis-set size due to short-range correlation

Wave-function theory - slow convergence of molecular properties

System : Boron monohydride (BH)

Observations :

- Slow convergence with basis-set size due to short-range correlation
- Electron-electron cusp (Emmanuel Giner's poster)

Wave-function theory - slow convergence of molecular properties

System : Boron monohydride (BH)

Observations :

- Slow convergence with basis-set size due to short-range correlation
- Electron-electron cusp (Emmanuel Giner's poster)

Introduction

Basis-set correction

(1)Basis-set correction

Applications 2

3 Conclusion and perspectives

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Outline

1 Basis-set correction

Applications

3 Conclusion and perspectives

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Levy-Lieb constrained-search formulation

Standard Levy-Lieb constrained-search universal density functional

$$E_0 = \min_n \left\{ F[n] + \int \mathrm{d}\mathbf{r} \, v_{\mathrm{ne}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

where

$$\boldsymbol{\mathsf{F}[n]} = \min_{\Psi \to n} \langle \Psi | \, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi \rangle$$

Starting from DFT formalism Decomposition of the universal density functiona Approximation of the complementary functional

Levy-Lieb constrained-search formulation

Standard Levy-Lieb constrained-search universal density functional

$$E_0 = \min_n \left\{ F[n] + \int \mathrm{d}\mathbf{r} \, v_{\mathrm{ne}}(\mathbf{r}) n(\mathbf{r}) \right\}$$

where

$$\boldsymbol{\mathsf{F}}[\boldsymbol{\mathsf{n}}] = \min_{\Psi \to \boldsymbol{\mathsf{n}}} \langle \Psi | \, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi \rangle$$

Restriction of the density on a finite basis-set

(Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, J. Chem. Phys. 149, (2018))

$$E_0^{\mathcal{B}} = \min_{n^{\mathcal{B}}} \left\{ F[n^{\mathcal{B}}] + \int \mathrm{d}\mathbf{r} \, v_{\mathsf{ne}}(\mathbf{r}) n^{\mathcal{B}}(\mathbf{r}) \right\} \geqslant E_0$$

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Decomposition of the universal density functional

Decomposition of the universal functional

(Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, J. Chem. Phys. 149, (2018))

$$\boldsymbol{F}[\boldsymbol{n}^{\mathcal{B}}] = \min_{\boldsymbol{\Psi}^{\mathcal{B}} \to \boldsymbol{n}^{\mathcal{B}}} \langle \boldsymbol{\Psi}^{\mathcal{B}} | \hat{\boldsymbol{T}} + \hat{W}_{\text{ee}} | \boldsymbol{\Psi}^{\mathcal{B}} \rangle + \bar{\boldsymbol{E}}^{\mathcal{B}}[\boldsymbol{n}^{\mathcal{B}}]$$

- Ψ^B : Expended on a finite basis set
- $\bar{E}^{\mathcal{B}}[n^{\mathcal{B}}] = \text{Complementary density functional}$
- Complete Basis Set (CBS) limit : F[n] is exact, and $\overline{E}^{\mathcal{B}}[n^{\mathcal{B}}] = 0$

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Decomposition of the universal density functional

Decomposition of the universal functional

(Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, J. Chem. Phys. 149, (2018))

$$\boldsymbol{F}[\boldsymbol{n}^{\mathcal{B}}] = \min_{\boldsymbol{\Psi}^{\mathcal{B}} \to \boldsymbol{n}^{\mathcal{B}}} \langle \boldsymbol{\Psi}^{\mathcal{B}} | \hat{\boldsymbol{T}} + \hat{W}_{\text{ee}} | \boldsymbol{\Psi}^{\mathcal{B}} \rangle + \bar{\boldsymbol{E}}^{\mathcal{B}}[\boldsymbol{n}^{\mathcal{B}}]$$

- Ψ^B : Expended on a finite basis set
- $\bar{E}^{\mathcal{B}}[n^{\mathcal{B}}] =$ Complementary density functional
- Complete Basis Set (CBS) limit : F[n] is exact, and $\overline{E}^{\mathcal{B}}[n^{\mathcal{B}}] = 0$

$$E_{0}^{\mathcal{B}} = \min_{n^{\mathcal{B}}} \left\{ F[n^{\mathcal{B}}] + \int d\mathbf{r} \, v_{ne}(\mathbf{r}) n^{\mathcal{B}}(\mathbf{r}) \right\}$$
$$= \min_{\Psi^{\mathcal{B}}} \left\{ \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{ee} + \hat{V}_{ne} | \Psi^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}}[n_{\Psi^{\mathcal{B}}}] \right\}$$

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Decomposition of the universal density functional

Decomposition of the universal functional

(Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, J. Chem. Phys. 149, (2018))

$$\boldsymbol{F}[\boldsymbol{n}^{\mathcal{B}}] = \min_{\boldsymbol{\Psi}^{\mathcal{B}} \to \boldsymbol{n}^{\mathcal{B}}} \langle \boldsymbol{\Psi}^{\mathcal{B}} | \hat{\boldsymbol{T}} + \hat{W}_{\text{ee}} | \boldsymbol{\Psi}^{\mathcal{B}} \rangle + \bar{\boldsymbol{E}}^{\mathcal{B}}[\boldsymbol{n}^{\mathcal{B}}]$$

- Ψ^B : Expended on a finite basis set
- $\bar{E}^{\mathcal{B}}[n^{\mathcal{B}}] = \text{Complementary density functional}$
- Complete Basis Set (CBS) limit : F[n] is exact, and $\overline{E}^{\mathcal{B}}[n^{\mathcal{B}}] = 0$

$$E_{0}^{\mathcal{B}} = \min_{n^{\mathcal{B}}} \left\{ F[n^{\mathcal{B}}] + \int d\mathbf{r} \, v_{\mathsf{ne}}(\mathbf{r}) n^{\mathcal{B}}(\mathbf{r}) \right\}$$
$$= \min_{\Psi^{\mathcal{B}}} \left\{ \langle \Psi^{\mathcal{B}} | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}}[n_{\Psi^{\mathcal{B}}}] \right\}$$

 \rightarrow Quantum Package (https://quantumpackage.github.io/qp2/) \leftarrow

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Two approaches

Variational approach : Self-consistent formalism

$$\left(\hat{T} + \hat{V}_{\mathsf{ne}} + \hat{W}_{\mathsf{ee}} + \hat{V}^{\mathcal{B}}[\mathbf{n}_{\Psi^{\mathcal{B}}}]\right) |\Psi^{\mathcal{B}}\rangle = \mathcal{E}^{\mathcal{B}} |\Psi^{\mathcal{B}}\rangle,$$

- Correction to the wave function
- Computation of properties as expectation values or analytical derivatives

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Two approaches

Variational approach : Self-consistent formalism

$$\left(\hat{T} + \hat{V}_{\mathsf{ne}} + \hat{W}_{\mathsf{ee}} + \hat{V}^{\mathcal{B}}[\mathbf{n}_{\Psi^{\mathcal{B}}}]\right) |\Psi^{\mathcal{B}}\rangle = \mathcal{E}^{\mathcal{B}} |\Psi^{\mathcal{B}}\rangle,$$

- Correction to the wave function
- Computation of properties as expectation values or analytical derivatives

Non-variational approach : non-self-consistent formalism

$$E_0^{\mathcal{B}} \simeq \underbrace{\langle \Psi_{\mathsf{FCI}}^{\mathcal{B}} | \hat{T} + \hat{V}_{\mathsf{ne}} + \hat{W}_{\mathsf{ee}} | \Psi_{\mathsf{FCI}}^{\mathcal{B}} \rangle}_{\mathsf{FCI}} + \bar{\mathcal{E}}^{\mathcal{B}} [n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}]$$

Variational principle

- Correction to the energy
- Computation of properties using <u>numerical derivatives</u>

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

Two approaches

Variational approach : Self-consistent formalism

$$\left(\hat{T} + \hat{V}_{\mathsf{ne}} + \hat{W}_{\mathsf{ee}} + \hat{V}^{\mathcal{B}}[\mathbf{n}_{\Psi^{\mathcal{B}}}]\right) |\Psi^{\mathcal{B}}\rangle = \mathcal{E}^{\mathcal{B}} |\Psi^{\mathcal{B}}\rangle,$$

- Correction to the wave function
- Computation of properties as expectation values or analytical derivatives

Non-variational approach : non-self-consistent formalism

$$E_0^{\mathcal{B}} \simeq \underbrace{\langle \Psi_{\mathsf{FCI}}^{\mathcal{B}} | \hat{\mathcal{T}} + \hat{\mathcal{V}}_{\mathsf{ne}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi_{\mathsf{FCI}}^{\mathcal{B}} \rangle}_{\mathsf{Variational principle}} + \underbrace{\bar{\mathcal{E}}^{\mathcal{B}}[n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}]}_{\mathsf{DFT}}$$

$$\mathsf{E}_{0}^{\mathcal{B}} \simeq \mathsf{E}_{\mathsf{WFT1}}^{\mathcal{B}} + \bar{\mathsf{E}}^{\mathcal{B}}[\mathsf{n}_{\mathsf{WFT2}}^{\mathcal{B}}]$$

- Correction to the energy
- Computation of properties using <u>numerical derivatives</u>

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

Projection of the electron-electron interaction in the basis set ${\cal B}$

 $\hat{P}^{\mathcal{B}}\hat{W}_{ee}\hat{P}^{\mathcal{B}} \rightarrow A$ non-diverging electronic interaction

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

Projection of the electron-electron interaction in the basis set ${\cal B}$

 $\hat{P}^{\mathcal{B}}\hat{W}_{ee}\hat{P}^{\mathcal{B}} \rightarrow A$ non-diverging electronic interaction

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

Projection of the electron-electron interaction in the basis set ${\cal B}$

 $\hat{P}^{\mathcal{B}}\hat{W}_{ee}\hat{P}^{\mathcal{B}} \rightarrow A$ non-diverging electronic interaction

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

Projection of the electron-electron interaction in the basis set ${\cal B}$

 $\hat{P}^{\mathcal{B}}\hat{W}_{ee}\hat{P}^{\mathcal{B}} \rightarrow A$ non-diverging electronic interaction

Possible comparison with the range-separated DFT method ?

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

From the long-range electron-electron interaction in RS-DFT ...

$$\hat{W}_{ee}^{lr} = \sum_{i < j} w_{ee}^{lr} (|\mathbf{r}_i - \mathbf{r}_j|)$$
$$w_{ee}^{lr} (|\mathbf{r}_i - \mathbf{r}_j|) = \frac{\operatorname{erf}(\mu |\mathbf{r}_i - \mathbf{r}_j|)}{|\mathbf{r}_i - \mathbf{r}_j|}$$

with

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

From the long-range electron-electron interaction in RS-DFT ...

$$\hat{W}_{\text{ee}}^{\text{lr}} = \sum_{i < j} w_{\text{ee}}^{\text{lr}}(|\mathbf{r}_i - \mathbf{r}_j|)$$
$$w_{\text{ee}}^{\text{lr}}(|\mathbf{r}_i - \mathbf{r}_j|) = \frac{\text{erf}(\mu |\mathbf{r}_i - \mathbf{r}_j|)}{|\mathbf{r}_i - \mathbf{r}_j|}$$

with

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

From the long-range electron-electron interaction in RS-DFT ...

$$\hat{W}_{ee}^{lr} = \sum_{i < j} w_{ee}^{lr}(|r_i - r_j|)$$
$$w_{ee}^{lr}(|r_i - r_j|) = \frac{\text{erf}(\mu|r_i - r_j|)}{|r_i - r_j|}$$

with

... to an expression for the electron-electron interaction projected in the basis set ${\mathcal B}$

 $\hat{P}^{\mathcal{B}}\hat{W}_{ee}\hat{P}^{\mathcal{B}}$

 \rightarrow after comparisons :

$$w_{\text{ee}}^{\mathcal{B}}(r_i, |r_i - r_j|) \simeq rac{ ext{erf}(\mu^{\mathcal{B}}(r_i)|r_i - r_j|)}{|r_i - r_j|}$$

Starting from DFT formalism Decomposition of the universal density functional Approximation of the complementary functional

How to approximate the complementary functional ?

Approximation of the complementary functional

Mapping between the physics of range-separated DFT and basis-set correction :

$$\bar{\mathcal{E}}_{\mathsf{PBEUEG}}^{\mathcal{B}}[n] \simeq \int \mathsf{d}\mathbf{r} \, \bar{\mathbf{e}}_{\mathsf{c},\mathsf{PBEUEG}}^{\mathsf{sr},\mu}(n,\nabla n(\mathbf{r}),\mu^{\mathcal{B}}(\mathbf{r}))$$

 $\bar{e}_{c, \text{ PBEUEG}}^{sr, \mu} \rightarrow \text{Complementary short-range } (sr) \text{ correlation } (c)$

Overview Correction of the dipole moments calculations

Outline

1 Basis-set correction

2 Applications

3 Conclusion and perspectives

Overview Correction of the dipole moments calculations

Applications of the basis-set correction method

Non-self-consistent basis-set correction

- Ground state energies [1][2]
- Energy differences : atomization energies [2]

[1] Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, J. Chem. Phys. (2018)

[2] Loos, Pradines, Scemama, Toulouse, Giner, J. Phys. Chem. Lett. (2019)

Overview Correction of the dipole moments calculations

Applications of the basis-set correction method

Non-self-consistent basis-set correction

- Ground state energies [1][2]
- Energy differences : atomization energies [2]

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, J. Chem. Phys. (2018)
 Loos, Pradines, Scemama, Toulouse, Giner, J. Phys. Chem. Lett. (2019)

Self-consistent basis-set correction

• Ground-state energies [3]

[3] Giner, Traore, Pradines, Toulouse, J. Chem. Phys (2021)

Overview Correction of the dipole moments calculations

Applications of the basis-set correction method

Non-self-consistent basis-set correction

- Ground state energies [1][2]
- Energy differences : atomization energies [2]
- Dipole moments
- [1] Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, J. Chem. Phys. (2018)
- [2] Loos, Pradines, Scemama, Toulouse, Giner, J. Phys. Chem. Lett. (2019)

Self-consistent basis-set correction

- Ground-state energies [3]
- Dipole moments [3]
- [3] Giner, Traore, Pradines, Toulouse, J. Chem. Phys (2021)

Overview Correction of the dipole moments calculations

BH dipole moment - using self-consistent framework

Overview Correction of the dipole moments calculations

BH dipole moment - using self-consistent framework

Overview Correction of the dipole moments calculations

Non variational approach - CCSD(T)

Definition of the dipole moment :

$$\hat{H}(\epsilon) = \hat{H} - \epsilon \hat{d}$$

then

$$d = -\frac{\partial E}{\partial \epsilon}\bigg|_{\epsilon=0} \simeq -\frac{E(\epsilon) - E(-\epsilon)}{2\epsilon}\bigg|_{\epsilon=0}$$

Overview Correction of the dipole moments calculations

Non variational approach - CCSD(T)

Definition of the dipole moment :

$$\hat{H}(\epsilon) = \hat{H} - \epsilon \hat{d}$$

then

$$d = -\frac{\partial E}{\partial \epsilon}\bigg|_{\epsilon=0} \simeq -\frac{E(\epsilon) - E(-\epsilon)}{2\epsilon}\bigg|_{\epsilon=0}$$

Correction of the CCSD(T) dipole moment

$$\begin{split} E_0^{\mathcal{B}} &\simeq E_{\mathsf{WFT1}}^{\mathcal{B}} + \bar{E}^{\mathcal{B}}[n_{\mathsf{WFT2}}^{\mathcal{B}}] \longrightarrow d_0^{\mathcal{B}} \simeq d_{\mathsf{WFT1}}^{\mathcal{B}} + \bar{d}^{\mathcal{B}}[n_{\mathsf{WFT2}}^{\mathcal{B}}] \\ d_{\mathsf{CCSD}(\mathsf{T}) + \mathsf{PBEUEG}}^{\mathcal{B}} &= d_{\mathsf{CCSD}(\mathsf{T})}^{\mathcal{B}} + \bar{d}^{\mathcal{B}}[n_{\mathsf{HF}}^{\mathcal{B}}] \end{split}$$

Overview Correction of the dipole moments calculations

Non variational approach - CCSD(T)

Definition of the dipole moment :

$$\hat{H}(\epsilon) = \hat{H} - \epsilon \hat{d}$$

then

$$d = -\frac{\partial E}{\partial \epsilon}\Big|_{\epsilon=0} \simeq -\frac{E(\epsilon) - E(-\epsilon)}{2\epsilon}\Big|_{\epsilon=0}$$

Correction of the CCSD(T) dipole moment

$$\begin{split} E_0^{\mathcal{B}} \simeq E_{\mathsf{WFT1}}^{\mathcal{B}} + \bar{E}^{\mathcal{B}}[n_{\mathsf{WFT2}}^{\mathcal{B}}] &\longrightarrow d_0^{\mathcal{B}} \simeq d_{\mathsf{WFT1}}^{\mathcal{B}} + \bar{d}^{\mathcal{B}}[n_{\mathsf{WFT2}}^{\mathcal{B}}] \\ d_{\mathsf{CCSD}(\mathsf{T})+\mathsf{PBEUEG}}^{\mathcal{B}} = d_{\mathsf{CCSD}(\mathsf{T})}^{\mathcal{B}} + \bar{d}^{\mathcal{B}}[n_{\mathsf{HF}}^{\mathcal{B}}] \end{split}$$

Basis-set correction of the dipole moment

Solve the Hartree-Fock equation with a field operator to compute $n_{HF}(\epsilon)$. Then :

$$\bar{d}^{\mathcal{B}} = -\frac{\bar{E}^{\mathcal{B}}_{\mathsf{PBE-UEG}}[\mathbf{n}_{\mathsf{HF}}(\epsilon)] - \bar{E}^{\mathcal{B}}_{\mathsf{PBE-UEG}}[\mathbf{n}_{\mathsf{HF}}(-\epsilon)]}{2\epsilon}$$

Overview Correction of the dipole moments calculations

BH dipole moment - CCSD(T)

Overview Correction of the dipole moments calculations

BH dipole moment - CCSD(T)

Overview Correction of the dipole moments calculations

CCSD(T)+PBEUEG errors

aug-cc-pVDZ basis set

Overview Correction of the dipole moments calculations

CCSD(T)+PBEUEG errors

aug-cc-pVTZ basis set

Overview Correction of the dipole moments calculations

CCSD(T)+PBEUEG errors

aug-cc-pVQZ basis set

Overview Correction of the dipole moments calculations

CCSD(T)+PBEUEG errors

aug-cc-pV5Z basis set

Conclusion and perspectives

Summary

 Test of the <u>self-consistent</u> and <u>non-self-consistent</u> basis set correction for the dipole moment

Conclusion and perspectives

Summary

- Test of the <u>self-consistent</u> and <u>non-self-consistent</u> basis set correction for the dipole moment
- Acceleration of the CCSD(T) dipole moment convergence with the basis-set correction with a correction as cheap as an HF calculation

Conclusion and perspectives

Summary

- Test of the <u>self-consistent</u> and <u>non-self-consistent</u> basis set correction for the dipole moment
- Acceleration of the CCSD(T) dipole moment convergence with the basis-set correction with a correction as cheap as an HF calculation

Perspectives

 Study of the approximation used for the complementary functional *Ē^B[n]* using a simplified one-dimensional model (Julien Toulouse's poster)

Conclusion and perspectives

Summary

- Test of the <u>self-consistent</u> and <u>non-self-consistent</u> basis set correction for the dipole moment
- Acceleration of the CCSD(T) dipole moment convergence with the basis-set correction with a correction as cheap as an HF calculation

Perspectives

- Study of the approximation used for the complementary functional *Ē^B[n]* using a simplified one-dimensional model (Julien Toulouse's poster)
- Extension of the basis-set correction to higher order molecular properties / linear response theory

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

Mapping between RS-DFT and basis-set correction

Range-separated DFT : (J. Toulouse, P. Gori-Giorgi, and A. Savin, Theor. Chem. Acc., 114, 305, (2005))

 $\bar{E}_{c, md}^{sr, \mu}[n] = \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{lr}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{lr}[n] \rangle$

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

Mapping between RS-DFT and basis-set correction

Range-separated DFT : (J. Toulouse, P. Gori-Giorgi, and A. Savin, Theor. Chem. Acc., 114, 305, (2005))

$$\bar{E}_{c, \text{ md}}^{\text{sr}, \mu}[n] = \langle \Psi[n] | \hat{T} + \hat{W}_{\text{ee}} | \Psi[n] \rangle - \langle \Psi^{\text{lr}}[n] | \hat{T} + \hat{W}_{\text{ee}} | \Psi^{\text{lr}}[n] \rangle$$

$$\mathbb{T} \Psi^{\mathsf{lr}}[n] = \arg\min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}^{\mathsf{lr}}_{\mathsf{ee}} | \Psi \rangle$$

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

Mapping between RS-DFT and basis-set correction

Range-separated DFT : (J. Toulouse, P. Gori-Giorgi, and A. Savin, Theor. Chem. Acc., 114, 305, (2005))

$$\bar{E}_{c, \text{ md}}^{\text{sr}, \mu}[n] = \langle \Psi[n] | \hat{T} + \hat{W}_{\text{ee}} | \Psi[n] \rangle - \langle \Psi^{\text{lr}}[n] | \hat{T} + \hat{W}_{\text{ee}} | \Psi^{\text{lr}}[n] \rangle$$

$$\mathbb{I} \Psi^{\mathsf{lr}}[n] = \arg\min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}}^{\mathsf{lr}} | \Psi \rangle$$

Basis-set correction :

$$\bar{\boldsymbol{\mathcal{E}}}^{\mathcal{B}}[\boldsymbol{n}] = \langle \Psi[\boldsymbol{n}] | \hat{\boldsymbol{\mathcal{T}}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi[\boldsymbol{n}] \rangle - \langle \Psi^{\mathcal{B}}[\boldsymbol{n}] | \hat{\boldsymbol{\mathcal{T}}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\boldsymbol{n}] \rangle$$

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

Mapping between RS-DFT and basis-set correction

Range-separated DFT : (J. Toulouse, P. Gori-Giorgi, and A. Savin, Theor. Chem. Acc., 114, 305, (2005))

$$\bar{E}_{c, md}^{sr, \mu}[n] = \langle \Psi[n] | \hat{T} + \hat{W}_{ee} | \Psi[n] \rangle - \langle \Psi^{lr}[n] | \hat{T} + \hat{W}_{ee} | \Psi^{lr}[n] \rangle$$

$$\mathbb{T} \Psi^{\mathsf{lr}}[n] = \arg\min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}^{\mathsf{lr}}_{\mathsf{ee}} | \Psi \rangle$$

Basis-set correction :

$$\bar{\boldsymbol{\mathcal{E}}}^{\mathcal{B}}[\boldsymbol{n}] = \langle \Psi[\boldsymbol{n}] | \hat{\boldsymbol{\mathcal{T}}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi[\boldsymbol{n}] \rangle - \langle \Psi^{\mathcal{B}}[\boldsymbol{n}] | \hat{\boldsymbol{\mathcal{T}}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\boldsymbol{n}] \rangle$$

$$\mathbb{T} \Psi^{\mathcal{B}}[n] = \arg\min_{\Psi \to n^{\mathcal{B}}} \langle \Psi | \hat{P}^{\mathcal{B}} \Big(\hat{T} + \hat{W}_{\mathsf{ee}} \Big) \hat{P}^{\mathcal{B}} | \Psi \rangle$$

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

Mapping between RS-DFT and basis-set correction

Range-separated DFT : (J. Toulouse, P. Gori-Giorgi, and A. Savin, Theor. Chem. Acc., 114, 305, (2005))

$$\bar{E}_{\mathsf{c},\mathsf{\,md}}^{\mathsf{sr},\mu}[\mathit{n}] = \langle \Psi[\mathit{n}] | \,\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi[\mathit{n}] \rangle - \langle \Psi^{\mathsf{lr}}[\mathit{n}] | \,\hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathsf{lr}}[\mathit{n}] \rangle$$

$$\mathbb{T} \Psi^{\mathsf{lr}}[n] = \arg\min_{\Psi \to n} \langle \Psi | \hat{T} + \hat{W}^{\mathsf{lr}}_{\mathsf{ee}} | \Psi \rangle$$

Basis-set correction :

$$\bar{\boldsymbol{\mathcal{E}}}^{\mathcal{B}}[\boldsymbol{n}] = \langle \Psi[\boldsymbol{n}] | \hat{\boldsymbol{\mathcal{T}}} + \hat{W}_{\mathsf{ee}} | \Psi[\boldsymbol{n}] \rangle - \langle \Psi^{\mathcal{B}}[\boldsymbol{n}] | \hat{\boldsymbol{\mathcal{T}}} + \hat{W}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\boldsymbol{n}] \rangle$$

$$\mathbb{T} \Psi^{\mathcal{B}}[n] = \arg \min_{\Psi \to n^{\mathcal{B}}} \langle \Psi | \hat{P}^{\mathcal{B}} \Big(\hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} \Big) \hat{P}^{\mathcal{B}} | \Psi \rangle$$

Mapping between RS-DFT and basis-set correction electronic interaction

$$\hat{P}^{\mathcal{B}}\hat{W}_{\mathrm{ee}}\hat{P}^{\mathcal{B}}\simeq\hat{W}_{\mathrm{ee}}^{\mathrm{lr}}$$

Non-diverging interactions

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

BH ground state energy

BH ground state energy

Procedure #1 : $E_0^{\mathcal{B}} \simeq \langle \Psi_{\mathsf{FCI}}^{\mathcal{B}} | \hat{T} + \hat{V}_{\mathsf{ne}} + \hat{W}_{\mathsf{ee}} | \Psi_{\mathsf{FCI}}^{\mathcal{B}} \rangle + \bar{E}_{\mathsf{PBE-UEG}}^{\mathcal{B}} [n_{\Psi_{\mathsf{FCI}}^{\mathcal{B}}}]$

BH ground state energy

$$\textbf{Procedure \ \#2:} \ \hat{P}^{\mathcal{B}}\left(\hat{T} + \hat{V}_{\mathsf{ne}} + \hat{W}_{\mathsf{ee}} + \hat{V}^{\mathcal{B}}_{\mathsf{PBE-UEG}}[n_{\Psi^{\mathcal{B}}}]\right) |\Psi^{\mathcal{B}}\rangle = \mathcal{E}^{\mathcal{B}}|\Psi^{\mathcal{B}}\rangle$$

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT about approximations of the wave-function

Coulomb cusp condition

Electronic pair density

Density of probability to find electron 1 at position $\vec{r_1}$ while electron 2 is at position $\vec{r_2}$

 $n_2(\vec{r}_1, \vec{r}_2) = 2|\Psi(\vec{r}_1, \vec{r}_2)|^2$

 $r_1 = r_2 = 0.5$ a.u., $\theta \in [-\pi, \pi]$

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence

Helium pair density

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence

Helium pair density

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence

Helium pair density

Basis-set correction Applications WFT, about approximations of the wave-function Appendices

WFT approaches

Hartree-Fock approximation :

A Slater determinant :

$$\Psi^{\mathsf{HF}}(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{\mathsf{N}}) = (\mathsf{N}!)^{-1/2} \begin{vmatrix} \phi_{i}(\mathbf{x}_{1}) & \phi_{j}(\mathbf{x}_{1}) & ... & \phi_{k}(\mathbf{x}_{1}) \\ \phi_{i}(\mathbf{x}_{2}) & \phi_{j}(\mathbf{x}_{2}) & ... & \phi_{k}(\mathbf{x}_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{i}(\mathbf{x}_{\mathsf{N}}) & \phi_{j}(\mathbf{x}_{\mathsf{N}}) & ... & \phi_{k}(\mathbf{x}_{\mathsf{N}}) \end{vmatrix}$$

where

$$\phi_{i}(\mathbf{r},\omega) = \alpha(\omega) \sum_{\mu} c_{\mu i} \chi_{\mu}(\vec{r})$$
$$\phi_{i}(\mathbf{r},\omega) = \beta(\omega) \underbrace{\sum_{\mu} c_{\mu i} \chi_{\mu}(\vec{r})}_{\psi_{i}(\mathbf{r})}$$

with Gaussian-type basis functions :

$$\chi_{\mu}(\vec{r}) = r^{l_{\mu}} \left(\sum_{i} d_{\mu,i} e^{-\alpha_{\mu} r^{2}} \right) \mathcal{Y}_{l_{\mu},m_{\mu}}(\theta,\phi)$$

Diata Traore Basis-set correction

WFT approaches

Hartree-Fock approximation :

A Slater determinant :

$$\Psi^{\mathsf{HF}}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{\mathsf{N}}) = (\mathsf{N}!)^{-1/2} \begin{vmatrix} \phi_{j}(\mathbf{x}_{1}) & \phi_{j}(\mathbf{x}_{1}) & \dots & \phi_{\mathsf{k}}(\mathbf{x}_{1}) \\ \phi_{j}(\mathbf{x}_{2}) & \phi_{j}(\mathbf{x}_{2}) & \dots & \phi_{\mathsf{k}}(\mathbf{x}_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{j}(\mathbf{x}_{\mathsf{N}}) & \phi_{j}(\mathbf{x}_{\mathsf{N}}) & \dots & \phi_{\mathsf{k}}(\mathbf{x}_{\mathsf{N}}) \end{vmatrix}$$

Hartree-Fock equation :

$$E_0^{\mathsf{HF}} = \min_{\Psi^{\mathsf{HF}}} \langle \Psi^{\mathsf{HF}} | \hat{H} | \Psi^{\mathsf{HF}}
angle$$

Euler-Lagrange with the constraint $\langle \phi_i | \phi_j \rangle = \delta_{ij}$: $\hat{f} \phi_i(\mathbf{x}) = \epsilon_i \phi_i(\mathbf{x})$

Hartree-Fock estimation of the ground state energy :

$$\underbrace{E^{\text{correlation}}}_{\odot} = E^{\text{exact}} - E^{\text{HF}}$$

Introduction Basis-set correction Applications Conclusion and perspectives Appendices Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

WFT approaches

Hartree-Fock approximation :

A Slater determinant :

$$\Psi^{\mathsf{HF}}(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{\mathsf{N}}) = (\mathsf{N}!)^{-1/2} \begin{vmatrix} \phi_{i}(\mathbf{x}_{1}) & \phi_{j}(\mathbf{x}_{1}) & \dots & \phi_{k}(\mathbf{x}_{1}) \\ \phi_{i}(\mathbf{x}_{2}) & \phi_{j}(\mathbf{x}_{2}) & \dots & \phi_{k}(\mathbf{x}_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{i}(\mathbf{x}_{\mathsf{N}}) & \phi_{j}(\mathbf{x}_{\mathsf{N}}) & \dots & \phi_{k}(\mathbf{x}_{\mathsf{N}}) \end{vmatrix}$$

 \longrightarrow Configuration interaction methods

Introduction Basis-set correction Applications Conclusion and perspectives Appendices Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

FCI approach

The full configuration interaction (FCI) wave function :

$$\begin{split} \Psi^{\text{FCI}} \rangle &= c_{\text{HF}} |\psi^{\text{HF}}\rangle + \sum_{ar} c_{a}^{r} |\psi_{a}^{r}\rangle + \sum_{a > b, r < s} c_{ab}^{rs} |\psi_{ab}^{rs}\rangle + \sum_{a < b < c, r < s < t} c_{abc}^{rst} |\psi_{abc}^{rst}\rangle + \dots \end{split}$$

FIGURE 3.18 Excited Slater determinants generated from a ground state HF reference configuration.

(V.P. Gupta, Principles and applications of quantum chemistry, Elsevier (2016))

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

Approximations of the FCI

The full configuration interaction (FCI) wave function :

$$|\Psi^{\mathsf{FCI}}\rangle = c_{\mathsf{HF}}|\psi^{\mathsf{HF}}\rangle + \sum_{ar} c_a^r |\psi_a^r\rangle + \sum_{a>b, r$$

 $\ensuremath{\textcircled{}}$ Number of determinants scales exponentially with the size of the system

Truncation of the CI space :

- CIS (configuration interaction with simple excitations)
- CISD (configuration interaction with simple and double excitations)

Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy WFT slow convergence WFT, about approximations of the wave-function

Approximations of the FCI

The full configuration interaction (FCI) wave function :

$$|\Psi^{\mathsf{FCI}}\rangle = c_{\mathsf{HF}}|\psi^{\mathsf{HF}}\rangle + \sum_{ar} c_a^r |\psi_a^r\rangle + \sum_{a>b, r$$

 $\ensuremath{\textcircled{}}$ Number of determinants scales exponentially with the size of the system

Truncation of the CI space :

- CIS (configuration interaction with simple excitations)
- CISD (configuration interaction with simple and double excitations)
- CIPSI : Configuration Interaction Perturbatively Selected Iteratively

(B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745, (1973)) (E. Giner, A. Scemama, M. Caffarel, Canadian J. Chem., 91, 879-885 (2013))

Introduction Basis-set correction Applications	Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy
Conclusion and perspectives	WFT slow convergence
Appendices	WFT, about approximations of the wave-function

(B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745, (1973)) (E. Giner, A. Scemama, M. Caffarel, Canadian J. Chem., 91, 879-885 (2013))

Configuration-Interaction Perturbatively Selected Iteratively algorithm

Step 1 :

$$|\Psi^{(k)}
angle = \sum_{l\in\mathcal{R}^{(k)}} c_l^{(k)} |l
angle$$

Quantum Package (https://quantumpackage.github.io/qp2/)

Introduction Basis-set correction Applications	Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy
Conclusion and perspectives	WFT slow convergence
Appendices	WFT, about approximations of the wave-function

(B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745, (1973)) (E. Giner, A. Scemama, M. Caffarel, Canadian J. Chem., 91, 879-885 (2013))

Configuration-Interaction Perturbatively Selected Iteratively algorithm

Step 1 :

$$|\Psi^{(k)}\rangle = \sum_{I\in\mathcal{R}^{(k)}} c_I^{(k)} |I\rangle$$

Step 2 :

$$\epsilon_{P,PT2}^{(k)} = -\frac{|\langle \Psi^{(k)} | \hat{H} | P \rangle|^2}{\langle P | \hat{H} | P \rangle - \langle \Psi^{(k)} | \hat{H} | \Psi^{(k)} \rangle}$$

 \rightarrow Selection of the largest contributions $|\epsilon_{P,\text{PT2}}^{(k)}|$.

Image Quantum Package (https://quantumpackage.github.io/qp2/)

Introduction Basis-set correction Applications	Mapping betwen RS-DFT and basis-set correction An example of basis-set correction of ground state energy
Conclusion and perspectives	WFT slow convergence
Appendices	WFT, about approximations of the wave-function

(B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745, (1973)) (E. Giner, A. Scemama, M. Caffarel, Canadian J. Chem., 91, 879-885 (2013))

Configuration-Interaction Perturbatively Selected Iteratively algorithm

Step 1 :

$$|\Psi^{(k)}
angle = \sum_{I\in\mathcal{R}^{(k)}} c_I^{(k)} |I
angle$$

Step 2 :

$$\epsilon_{P,\mathsf{PT2}}^{(k)} = -\frac{|\langle \Psi^{(k)} | \hat{H} | P \rangle|^2}{\langle P | \hat{H} | P \rangle - \langle \Psi^{(k)} | \hat{H} | \Psi^{(k)} \rangle}$$

 \rightarrow Selection of the largest contributions $|\epsilon_{P,\text{PT2}}^{(k)}|$.

Step 3 :

If
$$|\sum_{P} \epsilon_{P, \mathsf{PT2}}^{(k)}| > \mathsf{threshold} \to \mathsf{Step 1}$$

Quantum Package (https://quantumpackage.github.io/qp2/)