Describing conical intersections with near term quantum computers

Saad Yalouz

Laboratoire de Chimie Quantique Université de Strasbourg

From Quantum Computing to Quantum Chemistry **I**) II) **SA-OO-VQE:** a quantum algorithm for photochemistry III) Take home messages

From Quantum Computing to Quantum Chemistry **I**) **II) SA-OO-VQE:** a quantum algorithm for photochemistry

III) Take home messages

I) From Quantum Computing to Quantum Chemistry

 $5/_{13}$

From Quantum Computing to Quantum Chemistry **I**)

II) **SA-OO-VQE:** a quantum algorithm for photochemistry

III) Take home messages

State-Averaged Orbital-Optimized VQE

FEATURES OF THE QUANTUM ALGORITHM

- Adapted to near term quantum computers (VQE-like)

- Provides useful data for photochemistry studies (e.g. PES, gradients and non-adiabatic couplings)

7/13

Classical processor

Optimization of θ (+ SA orbital-Opt.)

PES from SA-OO-VQE

⁸/₁₃

 dE_I

dx

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations

From Quantum Computing to Quantum Chemistry **I**) **II) SA-OO-VQE:** a quantum algorithm for photochemistry

III) Take home messages

 $11/_{13}$

IV) Take home messages

Next steps:

1) Switching to diabatic states ?

2) Application to quantum dynamics ?

12/13

Thanks to my colleagues

Emiel Koridon, Benjamin Lasorne, Bruno Senjean, Lucas Visscher and Thomas O'Brien

Thank you for your attention !

S. Yalouz, B. Senjean, J. Gunther, F. Buda, T. E. O'Brien, L. Visscher. Quantum Sci. Technol., 6(2), 024004. (2021)
S. Yalouz, E. Koridon, B. Senjean, B. Lasorne, F. Buda, L. Visscher (2021). arXiv:2109.04576. (accepté, journal JCTC)

Jordan-Wigner transformation

Where $\hat{\mathscr{P}}_k$ are "Pauli strings" $\hat{\mathscr{P}}_k = Z_1 \otimes X_2 \otimes \mathbf{1}_3 \otimes Y_4$

.

--